《NVIDIA 助力构建安全和高效的推荐系统.pdf》由会员分享,可在线阅读,更多相关《NVIDIA 助力构建安全和高效的推荐系统.pdf(27页珍藏版)》请在三个皮匠报告上搜索。
1、RECOMMENDERS - THE ENGINE OF THE INTERNETBilions of Users- Trilions of Items100Sof millions of etail items Amazon 8 Alibabarecommenders10003 of movies Netflix recommenderslapuauuoal saunll B AyHods sSuos Jo suoyu Jo S.0L10s of millions of books - Amazon recommenderBillions of Tik Toka YT videos- TT&
2、 YTrecommenderBillions of websites Google search rankSo much news!Il s Google 8 FB news recommendersShMDL#page#DEEP LEARNING RECOMMENDERS ARE A DIRECT PATHTO INCREASED REVENUESGather DataModel ComplexityTraining FrequencyClick-Through-RateRevenueLARGER DATASETSDEEP LEARNING MODELSFRESHERMODELSBETTER
3、 RECOMMENDATIONSIMPROVEOUTPERFORMINCREASESIMPROVESRECOMMENDATION QUALITYTRADITIONAL METHODSPROBABILITY OF PURCHASEENGAGEMENTAND RETENTIONnWIDIA#page#INTRODUCING DGX A100The Universal AI System- Data Analytics, Training and Inference18o0NVSwcNVME SSD#page#NEW MULTI-INSTANCE GPU (MIG)Optimize GPU Util
4、ization Expand Access to More Users with Guaranteed Quality of ServiceUp To 7 GPU Instances In a Single A100: DedicatedAmberSM,Memory,L2 cache,Bandwidth for hardwareQoS8isolationSimultaneous Workload Execution With GuaranteedQuality Of Service: AIL MIG instances run inPUGPUSTCCPUGPJparallel with pre
5、dictable throughput 8 latencyGPUMomGPU MomGPU MSmGPU MamGFUMmGPUMamGPUMomRight Sized GPU Allocation:Different sized MIGinstances based on targetworkloadsFlexibility to run any type ofworkload on a MGinstanceDiverse Deployment Environments: Supported withBare metal,Docker Kubernetes,Virtualized Env.S
6、ee MIG in action Running Al Inference and Mixed WorkloadsShMbr#page#NEED FOR INFERENCING AT THE EDGEREAL-TIMEAIAT THE EDGECORE DATACENTERBILLIONSOFSENSORSTHE NVIDIAEGXPLATFORMRETRAININGAND REPORTINGFromJe13INSICHTSANOMALYALER#page#MODERN APPS DEMAND ADVANCED NETWORKINGMonolithicArchitectureMicroserv