《计算机行业华为系列深度之十五:AI算力软件生态难以突破吗?-240919(31页).pdf》由会员分享,可在线阅读,更多相关《计算机行业华为系列深度之十五:AI算力软件生态难以突破吗?-240919(31页).pdf(31页珍藏版)》请在三个皮匠报告上搜索。
1、 证证 券券 研研 究究 报报 告告 AlAl算力软件生态:算力软件生态:难以突破吗难以突破吗?华为系列深度之十五证券分析师:黄忠煌 A0230519110001洪依真 A0230519060003杨海晏 A0230518070003李国盛 A0230521080003研究支持:崔航 A0230524080005联系人:曹峥 A0230123040004 2024.9.19SWSRESEARCH结论和投资分析意见结论和投资分析意见 2024H2,国 内AI芯片厂商产品密集迭代,软件生态是核心竞争要素之一,兼容CUDA路线海 光信息、以及自成体系路线华为昇腾为国产厂商中进展最快,用户使用体验佳,
2、新产品有望 更快放量。原因及逻辑原因及逻辑Al 开发框架:Pytorch、Tensorflow双寡头,且逐渐与AI芯片解耦。GPU 编程平台:训练端,每家AI芯片均自有GPU 编程平台软件,其中英伟达CUDA 具备先发 优势,形成一定的生态壁垒。其他厂商与英伟达竞争采用2类方式:1)兼容英伟达CUDA,典型代表是AMD、海光信息;2)自成体系:代表厂商华为昇腾、寒武纪。有别于大众的认识有别于大众的认识 市场认为,英伟达CUDA 生态壁垒难以突破,一方面是其与AI开发框架厂商的紧密支持,另一方面是CUDA中众多的针对性优化,和庞大的用户群体(迁移其他平台需要学习成本)。我们认为,1)AI开发框架
3、正在逐渐与英伟达CUDA/硬件解耦,开始原生支持AMD、华为等 厂商产品,这一方面的壁垒逐渐瓦解;2)GPU 编程平台的学习成本和针对性优化,确实仍需 要人才、用户、资金和时间的积累,但并非坚不可摧,且国产厂商如华为昇腾、海光信息均 已有较快进展。风险提示:险提示:AIAI 芯片产品迭代进芯片产品迭代进展不及预期;国产厂商软件工具用户习惯培育周期长;展不及预期;国产厂商软件工具用户习惯培育周期长;AIAI应用长时间无爆款,影响应用长时间无爆款,影响AlAl算力需求。算力需求。证券研究报告 2投资案件投资案件1 兼容兼容CUDA解决用户学习成本问题,实现无痛切换1)上层转换器,如ROCmHipi
4、fy Tools2)底层二进制机器码实时转译,已被禁止,有法律风险2 自成体系自成体系对厂商人才、技术、资金、品牌实力 要求较高,需要以非市场化途径切入 市场,培育用户习惯和生态难点在于其更新迭代速度永远跟不 上CUDA 并且很难做到完全兼容华为:人才供给充足,各类算子开 发进展较快,但由于开放较多底层 优化,开发难度大,用户不友好谷歌:Tensorflow提供强耦合支持,但芯片设计过于专用,非谷歌人员 使用有壁垒芯片本身性能以及算子库丰富程度 还有追赶空间生态壁垒产生的根源在于软硬件的高度耦合AI芯片公司需要投入的优化 最大的工作量是对海量算子和特定芯片的支持突破突破CUDA的两类方式的两类
5、方式AIAI芯片公司所采取的不同突围路线芯片公司所采取的不同突围路线 优劣势优劣势兼容CUDA 的路线,借力 英伟达生态深度学习框架+AI芯片”自研路线自行维护Pytorch、Tensorflow后端算子,开发者共建算子生态 证券研究报告 3AMD&海光海光 信息信息华为华为谷歌谷歌寒武寒武 纪纪&其其他总结总结:两条路径,各自突:两条路径,各自突破破AI芯片的整体性能=AI芯片硬件性能(GPUGPU 编程平台编程平台+深度学习框架支持深度学习框架支持)主要内容主要内容1.软件工具:AI 芯片的“大管家”2.训练端:后进入者竞争CUDA两类方式3.推理端:ONNX 为“中间人”,软件生 态百花
6、齐放4.相关公司5.风险提示SWSAIAI 开发框架开发框架x2h =ai.matmul(wx,x)h2h=ai.matmul(wh,h)next_h=x2h +h2hnext_h=ai.tanh()next_h=next_h.sum(b)GPU 编程平台编程平台Developer Tools Runtime二 二=二 二二二二二=Driver API(User Mode)Driver(Kernel Mode)数学表达计算图1)张量计算引擎+2)自 动求导机制=高层算子,例如全连接、卷积、科学库和实用程序库例如cuDNN最基础库,包 含前向、后向卷积、激活 函数、归一化、张量变换 等开发者工具