《姜碧野-伯努利:结构化的工业级流式机器学习系统.pdf》由会员分享,可在线阅读,更多相关《姜碧野-伯努利:结构化的工业级流式机器学习系统.pdf(24页珍藏版)》请在三个皮匠报告上搜索。
1、姜碧野/高级算法专家伯努利:结构化的工业级流式机器学习系统阿里妈妈Bernoulli,An Industrial Streaming System for Machine Learning with Structured DesignsIntroIntroDesignDesignUseUse CasesCasesSummarySummary#1#2#3#4#1#1IntroIntro ofof InternetInternet ApplicationsApplicationsInternet as IR(Information Ranking)Core applications of Inte
2、rnet:Search Engine/Recommendation/AdvertisingInternet is providing information services to users by ranking candidate itemsRanking requires predictionRanking requires predicting user behavior and preference(Click Through Rate etc.)Deep Learning is widely used for predicting CTRUpdating models in min
3、utes is very important!屠龙少年与龙:漫谈深度学习驱动的广告推荐技术发展周期2021Framework Algorithm Co-EvolutionThe success of DL has driven the evolution of the frameworkALGORITHMFRAMEWORKThe Hardware Lottery.Sara Hooker 2020屠龙少年与龙:漫谈深度学习驱动的广告推荐技术发展周期2021Design for ProductionFrameworks like Tensorflow/PyTorch work very well
4、in researchBut how does a“Framework”in Internet industry(Search Engine/Recommendation/Ads)look like?|min!(!,)Sample generation andfeature extraction fromstreaming data can be TB scale forCTR modelsIncremental updatesOptimization may failRepeatedexperimentationCloud NativeLimited ResourceVersion Cont
5、rolInference uses!()onlyIndustrial DL pipelineThe success of DL has driven the evolution of the industrial pipelineSampleGenerationTrainingServingXDL:An Industrial Deep Learning Framework for High-dimensional Sparse Data.Jiang et al.DLP-KDD 2019DCAF:A Dynamic Computation Allocation Framework for Onl
6、ine Serving System.Jiang et al.DLP-KDD 2020What Do We Need for Industrial Machine Learning Systems?Bernoulli,A Streaming System with Structured Designs.Luo et al.DLP-KDD 2021在线算力效能技术体系阿里定向广告 2020https:/ Talk:BernoulliXDLXDLDynaDynamicmic ComputationComputationAllocationAllocation FrameworkFrameworkT