Session 14Compute-in-Memory.pdf

编号:620816 PDF 23页 55.31MB 下载积分:VIP专享
下载报告请您先登录!

Session 14Compute-in-Memory.pdf

1、Session 14 Overview:Compute-in-Memory MEMORY SUBCOMMITTEEMemory access has been a major system-performance and energy-consumption bottleneck for traditional von Neumann system architectures.Compute-in-memory(CI M)architectures eliminate this bottleneck by integrating compute operations into the memo

2、ry array,to reduce memory access latency and data movement overhead.I nnovations in CI M design continue to improve energy and area efficiencies while maintaining overall AI network accuracy.This session includes 7 papers showcasing the latest developments in gain-cell,SRAM,and non-volatile CI M.Fea

3、tured innovations include the 1st demonstration of a microscaling data format and STT-MRAM based Bayesian neural network.Session Chair:Saekyu Lee EnCharge AI,Denver,COSession Co-Chair:Xueqing Li Tsinghua University,Beijing,China 248 2025 I EEE I nternational Solid-State Circuits ConferenceISSCC 2025

4、/SESSION 14/COMPUTE-IN-MEMORY/OVERVIEW979-8-3315-4101-9/25/$31.00 2025 I EEE8:00 AM 14.1 A 22nm 104.5TOPS/W -NMC-IMC Het erogeneous STT-MRAM CIM Macro for Noise-Tolerant Bayesian Neural Net works De-Qi You,National Tsing Hua University,Hsinchu,Taiwan I n Paper 14.1,National Tsing Hua University and

5、TSMC present an STT-MRAM CI M macro for noise-tolerant Bayesian neural networks with a heterogeneous in-and near-memory MAC structure.The 22nm macro achieves 104.5TOPS/W with a 0.03%accuracy loss for CI FAR-100.8:25 AM 14.2 A 16nm 216kb,188.4TOPS/W and 133.5TFLOPS/W Microscaling Mult i-Mode Gain-Cel

6、l CIM Macro Edge-AI Devices Win-San Khwa,TSMC Corporate Research,Hsinchu,Taiwan I n Paper 14.2,TSMC and National Tsing Hua University demonstrate the first CI M macro demonstrating the microscaling data format;achieving 133.5TFLPOS/W in a 16nm process.8:50 AM 14.3 A 28nm 17.83-t o-62.84TFLOPS/W Broa

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(Session 14Compute-in-Memory.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠