《2021年中国化工行业合成生物学领域相关企业分析报告(100页).pdf》由会员分享,可在线阅读,更多相关《2021年中国化工行业合成生物学领域相关企业分析报告(100页).pdf(100页珍藏版)》请在三个皮匠报告上搜索。
1、合成生物学难度有高低,可分为三个阶段:一是利用现有的天然生物模块构建新的调控网络并表现出新功能;二是采用从头合成方法人工合成基因组 DNA;三是人工创建全新的生物系统乃至生命体。合成生物学生产化学品的核心技术包括基因测序和编辑、菌种培育筛选、产品纯化分离。目前,合成生物学正处于产业化的关键阶段,产品种类迅速增加,新产品验证和对传统化学法的替代并行。在化学品的生产过程中,与传统的化学工艺相比,合成生物学具有微型化、可循环、更安全的特点:(1)微型化:利用合成生物学生产化学品的最小反应单元主要是细胞或酶的催化,因此放大难度较小,同一套装置适用于不同产品的生产,产品容易相互切换;而化学工艺需要不同单
2、元操作搭配不同的反应装置,装置大型化过程中存在不确定性,且同一套装置难以适用不同产品生产,较难切换。(2)可循环:合成生物学所需原料以生物质原料为主,符合可循环发展的理念,而化学工艺则以化石原料为主。(3)更安全:合成生物学生产所需反应条件更温和,产业链长度更短,安全性更高;而化学工艺生产通常需要在高温高压等特殊环境下进行,产业链更长,容易出现安全隐患,需要更高的安全管理水平。合成生物学与计算机科学相似度很高。合成生物学的目标是扩展或改变生物的行为,并对其进行改造服务产品生产。合成生物学过程的目标和方法可以用计算机的层次结构类比。在层次结构中,每个组成部分都包含在更复杂的系统中。在设计新行为时会先考虑到层次结构的顶部,但是实现的过程是自下而上的。层次结构的底部是 DNA, RNA,蛋白质和代谢产物(包括脂质和碳水化合物,氨基酸和核苷酸),类似于计算机中的晶体管、电容器和电阻器等。上一层是设备层,包括生化反应,该反应调节信息流并操纵物理过程,类似于在计算机中执行计算的逻辑门。在模块层,利用各种各样的生物设备库来组装起类似于集成电路一样功能的复杂路径。这些模块彼此之间的连接以及它们在宿主细胞中的整合,使合成生物学家能够以编程方式扩展或修改细胞的行为。尽管独立运行的工程化单元可以执行各种复杂性的任务,但通信单元的数量却可以进行更复杂的协调任务,这与计算机网络的情况非常相似。