书签 分享 收藏 举报 版权申诉 / 42

中国信通院:人工智能核心技术产业白皮书(45页).pdf

  • 上传人:木子璨璨
  • 文档编号:34504
  • 上传时间:2021-04-21
  • 格式:PDF
  • 页数:42
  • 大小:1.75MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    中国信通院 人工智能核心技术
    资源描述:

    《中国信通院:人工智能核心技术产业白皮书(45页).pdf》由会员分享,可在线阅读,更多相关《中国信通院:人工智能核心技术产业白皮书(45页).pdf(42页珍藏版)》请在三个皮匠报告文库上搜索。

    1、有监督学习建立在严苛条件之上,已不能完全满足模型学习需求,面对更为复杂的任务场景,业内加速探索强化学习、自监督学习等多元学习方式,试图缩小与通用智能的距离。深度强化学习不断演进,加速提升自主决策能力。深度强化学习加速拓展任务边界, 突破性解决多人棋牌、即时战略游戏等多智能体非完全信息博弈任务。目前,OpenAI、谷歌、微软等企业相继攻克即时战略、德州扑克、麻将等复杂游戏,并加速向无人机群体飞行等更为实际的应用场景拓展。另一方面,深度强化学习不断提升处理复杂任务的能力,逐步拓展至芯片设计、音乐编曲等对知识技能要求更高的专业领域,如 2020 年谷歌研究人员利用深度强化学习优化设计芯片布局,达到 。

    2、PPA(功率、性能、面积)的最佳平衡,显著缩短设计时间;清华大学提出用于在线伴奏生成的深度强化学习算法,能够根据输入音乐实时生成伴奏。自监督学习成为最为活跃的学习方式。谷歌、脸书等多家企业先后发布使用自监督学习的算法模型,通过挖掘无标注数据的监督信息,显著减少人为干预,在自然语言理解(NLP)领域取得显著成效,如谷歌 BERT、脸书 RoBERTa、OpenAI GPT-3 等。目前,学产两界正在加速自监督学习在计算机视觉(CV)领域的突破创新,已在精细图像处理方面初步取得进展,如华盛顿大学利用自监督学习方式实现图像背景的前后景分离,精度达像素级别,可实现头发丝的精确分离。然而,尽管在自然语言。

    3、理解、视觉处理等方面取得初步进展,现阶段自监督学习本质上仍依赖规范化、标签化的数据,主要借助预训练模型构造并学习数据特征,而非基于对数据内容和任务对象的深层次认知;真正理解数据内容的自监督学习尚未出现。(三)深度神经网络理论体系尝试颠覆性创新,多分支融合趋势渐显深度学习局限性日益凸显,理论体系探索革新。当前,以杰弗里辛顿(Geoffrey Hinton)为代表的业内巨头持续推动理论体系的创新,其中,胶囊网络作为革新热点,试图解决数据依赖与不可解释问题;然而,历史上胶囊网络的三个版本更新大相径庭,尚未形成稳定的新形态架构,仍处于探索阶段。此外,以胶囊网络为核心的应用也在不断探索,2020 年 Hinton团队提出一种用于机器学习安全领域的网络检测机制,显著提升攻击检出率;中佛罗里达大学学者提出胶囊路由方法,可通过输入句子查询视频中符合条件的人物及特定动作,但上述成果仍停留在研究阶段。深度神经网络与其他技术分支加速融合发展。人工智能头部企业、高校等开始摸索深度神经网络与知识图谱、传统机器学习等分支的融合创新。一方面,知识图谱试图在不颠覆深度学习理论的基础之下,弥补小样本训练与理解推理能力不足的技术天花板。。

    展开阅读全文
      三个皮匠报告文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:中国信通院:人工智能核心技术产业白皮书(45页).pdf
    链接地址:https://www.sgpjbg.com/baogao/34504.html

    copyright@ 2008-2013        长沙景略智创信息技术有限公司版权所有
    经营许可证编号:湘ICP备17000430-2   增值电信业务经营许可证编号:湘B2-20190120


    备案图标.png湘公网安备 43010402000778号


    三个皮匠报告文库
    收起
    展开