《SOLO :简单高效的视觉实例分割和识别框架.pdf》由会员分享,可在线阅读,更多相关《SOLO :简单高效的视觉实例分割和识别框架.pdf(38页珍藏版)》请在三个皮匠报告上搜索。
1、SOLO:SegmentingObjects byLocationsTaoKong孔涛http:/www.taokong.orqResearcher,ByteDance AI LabllByteDance字节跳动Joint work with Xinlong Wang. Rufeng Zhang,Yuning Jiang, Lei Li and Chunhua Shen#page#Outline Background and Introduction Previous Instance Segmentation Solutions SOLO (ECCV-2020) & SOLOv2 (Neur
2、iPS-2020)SummaryllByteDance字节跳动#page#Introduction: Visual Perception Problems Object Detectionxoq Bulpunoq e Buisn uoea azjeool pue spoolqo AISSE ol jeo5Output:A semantic label and a bounding box for each instance.Output space: N*(4+C) Semantic Segmentation:Goal: To classify each pixel into semantic
3、 categoriesOutput: A semantic label for each pixelOutput space:H*W*C后动 Instance Segmentation:Goal: To classify objects and localize each using a mask.Output:A semantic label and a mask for each instance.门Output space:?Figure crediit: He et al 2017#page#Introduction: Instance Segmentation is HARD to
4、formulateInstance-level prediction & pixelprediction Instance may occur at each position! Occlusions! Poses, scales and deformations!Need fine boundary!lByteDance字节跳动#page#Introduction: Instance Segmentation ApplicationsIntelligent DrivingllByteDance字节跳动#page#Introduction: Instance Segmentation Appl
5、icationsIntelligent RobotInput Point CloudsInstance Seamentation ResultsllByteDance字节跳动#page#Introduction: Instance Segmentation ApplicationsIntelligent EditingllByteDance字节跳动#page#Introduction: Instance Segmentation ApplicationsIntelligent Life&WorklByteDancee字节跳动#page#Previous SolutionsDeep Learni
6、nge.g., Normalized Cuts(2000)e.g,Mask R-CNN(2017)2015年Important but ignored due to time limitationWill be discussed laterllByteDance字节跳动#page#SOLOv2 results (ResNet-101,V100 GPU)#page#Previous Solutions: two methodsRPNFCNGroupingDetect-then-segment,Label-then-cluster,eg Discriminative loss,SGN,SSAP,