《Facebook-Waston Liang-AI框架从解决研究到生产问题的探索: Facebook应对PyTorch部署挑战的实践.pdf》由会员分享,可在线阅读,更多相关《Facebook-Waston Liang-AI框架从解决研究到生产问题的探索: Facebook应对PyTorch部署挑战的实践.pdf(24页珍藏版)》请在三个皮匠报告上搜索。
1、主办方: 梁万超 主办方主办方: Sergey Kareyev at Full Stack Deep Learning Bootcamp November 2019 主办方主办方: 主办方主办方: Ndarray library with acceleration Distributed transportJust-in-time compiler Utilities (data loading, etc) Gradient based optimization package Automatic differentiation engine Numpy alternative Deep le
2、arning, etc. 主办方主办方: PyTorch: An open source machine learning framework that accelerates the path from research prototyping to production deployment. Features with: Numpy-like ndarray (Tensor) Training with automatic differentiation Quick prototyping with Python Broad set of algorithms/apis to do de
3、ep learning Easy to extend Production ready 主办方主办方: 主办方主办方: 主办方主办方: We want a single tool for research and production Easier to transfer research results into models Diffi cult to do model conversion between frameworks Example like ONNX shows painful conversions between frameworks, especially between a dynamic and static framework Python proves much more easier to use. Flexibility is important. 主办