基于 AI Blueprints 的 Kubernetes 上的高效可扩展 GenAI [PAN1798].pdf

编号:971019 PDF 17页 1.17MB 下载积分:VIP专享
下载报告请您先登录!

基于 AI Blueprints 的 Kubernetes 上的高效可扩展 GenAI [PAN1798].pdf

1、 Compute-Efficient and Scaled GenAI on Kubernetes with OCI AI BlueprintsVishnu Kammari,Principal Product Manager,OCIDennis Kennetz,Sr.Machine Learning Engineer,OCIAgenda212345Enterprise Pain-PointsBest PracticesOCI Solutions&DemoCustomer StoriesPanel DiscussionEnterprises self-host LLMs on GPUs for

2、a variety of reasons.3Copyright 2025,Oracle and/or its affiliates|Confidential:Internal/Restricted/Highly RestrictedSecurity&ComplianceKeep sensitive data in-house.Meet regulatory or contractual obligations(e.g.healthcare,public sector).Customization&ControlFine-tune models with proprietary data.Avo

3、id API rate limits.Control over model upgrades.Performance&Cost EfficiencyDeploy close to enterprise data sources.Minimize latency.Reduce per-token costs at scale.When enterprises self-host LLMs,driving compute-efficiency and scale introduces 3 key challenges.4Copyright 2025,Oracle and/or its affili

4、ates|Confidential:Internal/Restricted/Highly RestrictedSoftware and Framework ChoicesIntegration,MLOps,and Infra MonitoringOnboarding&Infra ChoicesChallenge#1:Enterprises spend months right sizing and configuring infrastructure to ensure performance and compliance.5Copyright 2025,Oracle and/or its a

5、ffiliates|Confidential:Internal/Restricted/Highly RestrictedOnboarding&Infra ChoicesOptimize network setup and integrate storage(e.g.local NVMe,object storage,and Oracle network file storage service integration with tiering)to minimize latencyEstimate right number and size of GPUs(e.g.H100 vs H200 f

6、or inference workloads)Auto-provision RDMA networking for clustered GPU nodes(e.g.Llama-405B on 2 H100 nodes)Configure secure GPU access and compliance(e.g.IAM policies,network security rules)Install GPU drivers,CUDA,and other libraries while avoiding compatibility/performance issuesChallenge#2:Ente

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(基于 AI Blueprints 的 Kubernetes 上的高效可扩展 GenAI [PAN1798].pdf)为本站 (Flechazo) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠