2017年解锁深度视频理解的潜力.pdf

编号:95390 PDF 61页 6.46MB 下载积分:VIP专享
下载报告请您先登录!

2017年解锁深度视频理解的潜力.pdf

1、Unlocking the Potential of Deep Video Understanding gPrincipal Research Manager,Microsoft Research视觉智能和深度学习简介 深度图像理解技术 深度视频理解技术 实际应用及市场化 未来技术趋势探讨AI Golden Age 黄金时代Big Data Image database organized according to WordNet hierarchy 100K+concepts/nodes 500+images/node on average tens of millions of human

2、-annotated images A Knowledge Ontology有标注的最大图像数据库AI Golden Age黄金时代Big Data“Deep”LearningBig Compute Architecture advancements 架构演化 Fully connected neural networks-FNN Convolutional neural networks-CNN Recurrent Neural Networks-RNN Long Short-Term Memory-LSTM Fully convolutional networks-FCN Deep res

3、idual networks Resnet Deep Learning Going“Deeper”Deep Learning Going“Deeper”深度学习深度学习“深入化深入化 Fully Connected Neural Networks FNN 全连神经网络8InputOutputNeural Networks:Approximate a function to map known input to known output Learn weights through trainingLimitations of FNN 缺点:Many parameters/weights(参数多)

4、High computation Potentially suffer severe overfitting(过拟合)Need large#of labeled dataConvolutional Neural Networks(CNN)(LeCun89)卷积神经网络9 shared-weight 参数共享参数共享 locally connected “locality”保留位置信息保留位置信息 Hierarchical view 多分辨率多分辨率Learned Low-Level Filters 学到的低层筛选器11学到的高层筛选器RNN/LSTM 递归神经网络 Recurrent Neur

5、al Networks The networks with loops in them allowing information to persist Model time-sequence data LSTM network Long Short-Term Memory Capable of learning long-range dependencies Model temporal dynamics welltanhtanhInput GateOutput GateCellForget GateOutputInputMemory cell remembers info that occu

6、rred at many timesteps in the past.Architecture advancements架构演化 Fully connected neural networks-FNN Convolutional neural networks-CNN Recurrent Neural Networks-RNN Long Short-Term Memory-LSTM Fully convolutional networks-FCN Deep residual networks Resnet Deep Learning Going“Deeper”Deep Learning Goi

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(2017年解锁深度视频理解的潜力.pdf)为本站 (云闲) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠