人工智能青年论坛:弱监督机器学习范式——张敏灵 东南大学教授(15页).pdf

编号:87448 PDF 15页 920.92KB 下载积分:VIP专享
下载报告请您先登录!

人工智能青年论坛:弱监督机器学习范式——张敏灵 东南大学教授(15页).pdf

1、Learning with Weak Supervision(弱监督机器学习范式)(弱监督机器学习范式)CCAI人工智能青年论坛July 23,HangzhouPALM Group,School of Computer Science and Engineering,MOE Key Laboratory of Computer Network&Information Integration,Southeast University,ChinaMin-Ling Zhang(张敏灵张敏灵)Min-Ling ZhangLearning with Weak SupervisionBig DataEss

2、ential GoalTurn data into information and knowledge,so as to support sound decision makingKey TechniquesCloud ComputingManaging DataCrowdsourcingCollecting DataMachine LearningAnalyzing DataMin-Ling ZhangLearning with Weak SupervisionTraditional Supervised LearningobjectinstancelabelInput Spacerepre

3、sented by a single instance(feature vector)characterizing its propertiesOutput Spaceassociated with a single label characterizing its semanticsSupervised Learning AlgorithmPredictive modelinstancelabelMin-Ling ZhangLearning with Weak SupervisionBasic Assumption:Strong Supervisionlabelsupervision inf

4、ormationKey factor for successful learning(encoding semantics and regularities for the learning problem)Strong supervision assumption Sufficient labelingabundant labeled training data are available Explicit labelingobject labeling is unique and unambiguousMin-Ling ZhangLearning with Weak Supervision

5、But,Supervision Is Usually WeakStrong supervision(sufficient&explicit)Strong generalization abilityDifficult to have!Constrained by:Limited resources Physical environment Problem properties In practice,we usually have to learn with weak supervisionMin-Ling ZhangLearning with Weak SupervisionLearning

6、 with Weak Supervision Insufficient labelingLabeled Data+Unlabeled Data Non-Unique labelingMulti-Label Data(labeling with multiple valid labels)Ambiguous labelingPartial-Label Data(labeling with multiple candidate labels)Min-Ling ZhangLearning with Weak SupervisionSemi-Supervised Learning(SSL)Predic

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(人工智能青年论坛:弱监督机器学习范式——张敏灵 东南大学教授(15页).pdf)为本站 (云闲) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠