弱监督机器学习研究新进展(42页).pdf

编号:87442 PDF 42页 2.10MB 下载积分:VIP专享
下载报告请您先登录!

弱监督机器学习研究新进展(42页).pdf

1、July 23,2017 Recent Advances in Machine Learning from Weak Supervision Masashi Sugiyama Director,RIKEN Center for Advanced Intelligence Project(AIP)Professor,The University of Tokyo CCAI2017 Sugiyama,Suzuki&Kanamori,Density Ratio Estimation in Machine Learning,Cambridge University Press,2012 Sugiyam

2、a&Kawanabe,Machine Learning in Non-Stationary Environments,MIT Press,2012 Sugiyama,Statistical Reinforcement Learning,Chapman and Hall/CRC,2015 Supervised learning Reinforcement learning Unsupervised learning Textbooks Sugiyama,Introduction to Statistical Machine Learning,Morgan Kaufmann,2015 Quione

3、ro Sugiyama,Schwaighofer&Lawrence,Dataset Shift in Machine Learning,MIT Press,2009.In Japanese,(Chinese&Korean)What Is My Talk about?Machine learning from big data is successful.Great work on large-scale parallel implementation.However,there are various applications where massive labeled data is not

4、 available.Medicine,manufacturing,disaster,infrastructure In this talk,I will introduce our recent advances in classification from limited information.2 Supervised Classification Binary classification from labeled samples:A large number of labeled samples yield better classification performance.Opti

5、mal convergence rate:3 Positive Negative Decision boundary Unsupervised Classification 4 Since collecting labeled samples is costly,lets learn a classifier from unlabeled data.This is equivalent to clustering.To justify this,need the assumption that each cluster corresponds to each class.This is rar

6、ely satisfied in practice.Semi-Supervised Classification Use a large number of unlabeled samples and a small number of labeled samples:Find a decision boundary along cluster structure induced by unlabeled samples:Sometimes very useful!But same weakness as unsupervised classification.5 Positive Negat

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(弱监督机器学习研究新进展(42页).pdf)为本站 (云闲) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠