Veracode:2025年生成式AI代码安全报告:大语言模型编码安全性评估(英文版)(18页).pdf

编号:870599 PDF  中文版  DOCX 18页 1,008.72KB 下载积分:VIP专享
下载报告请您先登录!

Veracode:2025年生成式AI代码安全报告:大语言模型编码安全性评估(英文版)(18页).pdf

1、2025 GenAI Code Security ReportASSESSING THE SECURITY OF USING LLMS FOR CODINGContentsIntroduction 03Methodology&Context 05Results&Analysis 10Overall 10Performance across languages 11Performance across CWEs 12Performance across model sizes 13Performance over time 14Discussion 15Conclusion 172025 GEN

2、AI CODE SECURITY REPORT2Generative AI is rapidly changing the way software is developed.Rather than code directly in some programming language,developers are increasingly describing the functionality they want in natural language and using large language models to generate the concrete code.Signific

3、ant effort has been put into training these models for correctness,and recent assessments have found that newer,larger models are very good at generating code with the expected functionality.Less attention,however,has been paid to whether the resulting code is secure.The primary problem is that deve

4、lopers need not specify security constraints to get the code they want.For example,a developer can prompt a model to generate a database query without specifying whether the code should construct the query using a prepared statement(safe)or string concatenation(unsafe).The choice,therefore,is left u

5、p to the model.The goal of this report is to quantify the security properties of AI-generated code across a range of languages and models.The central question we explore is:In the absence of any security-specific guidance,do large language models generate secure code or not?To evaluate this question

6、,we developed a set of coding tasks for four popular programming languages:Java,Javascript,C#,and Python.These tasks involve filling in the missing part of a single function according to a comment describing the desired code.The key property of the tasks is that the requested functionality can be im

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(Veracode:2025年生成式AI代码安全报告:大语言模型编码安全性评估(英文版)(18页).pdf)为本站 (111111) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠