1、1Jolt Energy Storage Technologies,Holland,MI USA2Chemical Engineering Department,Michigan State University,East Lansing,MI USAThomas Guarr1*,Andrii Varenikov1,Sharmila Samaroo1,William Kruper1,Madison Shaffer1,Emmanuel Yankson2,David Hickey2Optimization of a High Performance Nonaqueous Organic Redox
2、 Flow Battery Via Machine LearningInternational Flow Battery Forum,Vienna,June 25,2025Symmetric All-Organic Redox Flow BatteryCATHOLYTECHARGEGENERATIONLOADDISCHARGEELECTRODEELECTRODEMEMBRANEANOLYTE1New Pyridinium AnolytesRedox potentialSolubilityViscosityConductivityDiffusion coefficientElectrode ki
3、neticsRadical persistenceEnergy DensityPower DensityService LifeCommercial ViabilityEnergy EfficiencyReduction potentials are nearly 1V lower than MV2+and 0.5V lower than 2,6-Me2-4-benzoylpyridiniums-2-1.5-1-0.50MV2+Acpy+Ph(Ph2pyMe+)2Ph(Me2pyMe+)2Ph(Ph2pyMe+)2Bz(Me2py)Et+this workFc2C-H interactions
4、 disrupt electrostatic interactions between non-aqueous electrolytes to increase solubilityS.Samaroo et al.,Nat Chem.2023 Oct;15(10):1365-1373Solubility and ViscosityLow Viscosity,High Concentration Pyridinium Anolytes for Organic Nonaqueous Redox Flow BatteriesS.Samaroo et al.,ACS Appl.Energy Mater
5、.2024,7,18,764076483Low Viscosity,High Concentration Pyridinium Anolytes for Organic Nonaqueous Redox Flow BatteriesS.Samaroo et al.,ACS Appl.Energy Mater.2024,7,18,76407648Conductivity and Diffusivity4Kinetic Model of Pyridinium ElectrochemistryModel describes the electron transfer kinetics of pyri
6、dinium molecules at the electrode surface.00.511.522.50102030405060708090100VoltageTime10C 85%SOC5ChronoamperometryDetermining decomposition ratesMeasured KExperimentalPredictedModeling and predicting stabilityStability Study6Kinetic Studies7MLR Stability Mode