unlocking-heterogeneous-ai-infrastructure-k8s-cluster-leveraging-the-power-of-hami-ji-xi-ai27dya-shi-k8szhong-shi-daep-hamizha-hao-xiao-zhang-daocloud-mengxuan-li-the-4th-paradigm.pdf

编号:627319 PDF 32页 2.29MB 下载积分:VIP专享
下载报告请您先登录!

unlocking-heterogeneous-ai-infrastructure-k8s-cluster-leveraging-the-power-of-hami-ji-xi-ai27dya-shi-k8szhong-shi-daep-hamizha-hao-xiao-zhang-daocloud-mengxuan-li-the-4th-paradigm.pdf

1、Unlocking Heterogeneous AI Infrastructure K8s ClusterLeveraging the Power of HAMi MengXuan LiGithub archlitchi4ParadigmAbout usXiao Zhang software engineerGithub wawa0210 DaoCloudChanllange 1:Requirement for Computing Power is Growing Figure 1:Training Flops trendFigure 2:NVIDIA Flagship GPU for ML

2、AI technology has entered the stage of commercialization and requires more and more computing power.The demand for computing power for large langrage models can be quite exaggerated(375x/year)In order to match the trend of computing power growth,GPU manufacturers have released new GPUs rapidly,with

3、more powerful computing power,and higher price.Chanllange 2:Low Resource Utilization on GPUTwo factors lead to low utilization of GPU devices in k8s clusters:GPU resources can only be applied by container in an exclusive mannerIn order to match the trend of computing power growth,GPU manufacturers h

4、ave released new GPUs rapidly,with more powerful computing power,and higher price.A typical GPU utilization in GPU task in kubernetes:Core utilization can be 0 for In order to match the trend of computing power growth,GPU manufacturers have released new GPUs rapidly,with more powerful computing powe

5、r,and higher price.Chanllange 3:The demand for heterogeneous AI devices continues to growIn addition to Nvidia GPUs,there are also Cambricon,Hygon,iluvatar,Huawei Ascend AI devices.There are more and more AI smart devices.Unified orchestration scheduling and management will be very urgent.Shipments

6、exceeded 1.4 millionNvidia for 85%,Huawei 10%,Baidu 2%,and others 2%A K8s cluster has consistent management of multipleheterogeneous AI device nodes(NVIDIA,Cambricon,Hygon,NVIDIA,Cambricon,Hygon,iluvatar,Huawei Ascendiluvatar,Huawei Ascend).Device sharing(or device virtualization)on Kubernetes.Scena

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(unlocking-heterogeneous-ai-infrastructure-k8s-cluster-leveraging-the-power-of-hami-ji-xi-ai27dya-shi-k8szhong-shi-daep-hamizha-hao-xiao-zhang-daocloud-mengxuan-li-the-4th-paradigm.pdf)为本站 (山海) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠