12-Sharing GPUs among multiple containers- 李孟轩.pdf

编号:621017 PDF 17页 1.34MB 下载积分:VIP专享
下载报告请您先登录!

12-Sharing GPUs among multiple containers- 李孟轩.pdf

1、Is sharing GPU to multiple containers feasible?李孟轩目录Background01Scheduling attempts03Device Layer attempts02ContentSummary04Background:Part 01Device cant be fully utilizedA typical GPU utilization in production environmentTwo factors lead to low utilization of GPU devices in k8s clusters:GPU resourc

2、es can only be applied by container in an exclusive mannerIn order to match the trend of computing power growth,GPU manufacturers have released new GPUs rapidly,with more powerful computing power,and higher price.A typical GPU utilization in GPU task in kubernetes:Core utilization can be 0 for a lon

3、g period of timeIn order to match the trend of computing power growth,GPU manufacturers have released new GPUs rapidly,with more powerful computing power,and higher price.Issue#52757 点击左上角开始 新建幻灯片旁的下拉箭头,选择 Title and Content 添加 默认一级段落内容字号为 18Device layer Attempts:Part 02How to construct a GPU-resourc

4、e sandox?Nvidia TimeSliceapiVersion:v1kind:ConfigMapmetadata:name:time-slicing-config-alldata:any:|-version:v1flags:migStrategy:nonesharing:timeSlicing:renameByDefault:falsefailRequestsGreaterThanOne:falseresources:-name: Nvidia Time-slice is like put multiple containers directly into that GPU:No re

5、source controlNo OverheadNvidia MIGNvidia MIG splits a GPU into serveral MIG-instances:Resource Isolation guranteeLow OverheadOnly apply for ampere or later GPUs Device memory and compute-core are cut simultaneouslyHave to follow certain templateHard to configure dynamically in kubernetesNvidia MPSN

6、vidia MPS smashes tasks from multiple containers into a single context,which brings high-performace,but high-risks:Resource Isolation guranteeHigh performanceHigh risk for task failureHard to configure inside kubernetesversion:v1sharing:mps:renameByDefault:trueresources:-name: is a third-party resou

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(12-Sharing GPUs among multiple containers- 李孟轩.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠