07-Fine-tuning LLM with Argo Workflows - A Kubernetes-native Approach-Shuangkun Tian.pdf

编号:621015 PDF 18页 1.03MB 下载积分:VIP专享
下载报告请您先登录!

07-Fine-tuning LLM with Argo Workflows - A Kubernetes-native Approach-Shuangkun Tian.pdf

1、Fine-tuning LLM with ArgoWorkflows:A Kubernetes-nativeApproachShuangkun TianArgo Maintainer、Alibaba Cloud Software EngineerThe Challenge of Fine-tuning01Building a TCM Assistant on DeepSeek03Why Argo Workflows for Fine-tuning02ContentBenefits and Future04The Challenge of Fine-tuningPart 01What is Fi

2、ne-tuning?Adapts pre-trained models to specific tasks/domains via targeted training.Base Model:Deepseek R1、GPT-3、BERTFine-tuned Model:DeepSeek-Finance、Claude、SciBERTChallenge of Fine-tuning Substantial Computational Resources Various heterogeneous devices:CPU、GPU、DPU Computa8onal Cost:Single trainin

3、g run over$10k+Complex Workflows Mu8-stages:Preprocessing Training Evalua8on Larger Tasks(1w+)、Mu8-workflows(1000+)Manual workflows=High cost+Low reliabilityWhy Argo Workflows?Part 02What is Argo Workflows?Argo ProjectArgo WorkflowsArgo CDArgo Events、Argo Rollout Third Active Community in CNCF Most

4、Popular Workflow EngineMachine Learning pipelinesData and batch processingInfrastructure automationCI/CDArgo Workflows for ML Pipelines Over 8K companies use Argo or those ML tools based on Argo Argo Workflows has been a core component in the orchestration of AI/ML workloads on Kubernetes.Argo Workf

5、lowsKubeflow PipelinesNuma flowWhy Argo Workflows for AI/Fine-tuning Kubernetes-native Scalability Reproducibility Fault tolerance Visibility Ease of Use YAML/Python Building a Traditional Chinese Medicine Assistant Based on DeepSeekPart 03Workflow DefintionFine-tuning LLM Dataset Prepare HuggingFac

6、e Hub(e.g.,datasets.load_dataset(glue,marc)Raw Data Clean Tokenize Base Model DeepSeek-R1、DeepSeek-R1-Distill 4-bit Quantized Base Model Training LoRA Adapters Full Fine-tuning Evaluation Human evaluationFine-tuning Chinese Medicine Assistant on Deepseek Tradi

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(07-Fine-tuning LLM with Argo Workflows - A Kubernetes-native Approach-Shuangkun Tian.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠