将 HugeCTR Embedding 集成于 TensorFlow.pdf

编号:29564 PDF 23页 1.26MB 下载积分:VIP专享
下载报告请您先登录!

将 HugeCTR Embedding 集成于 TensorFlow.pdf

1、NVIDIAINTEGRATEHUGECTRWITHEMBEDDINGTENSORFLOW董建兵(JianbiingDong),Dec.17h2020#page#HugeCTR: Scalable, Accelerated Traininghttps:/ is a highly efficient GPU framework and reference design dedicated for Click-Through-Rate (CTR) estimatingtraining.Fast: Fastest available solution in MLPerf vO.7.Achieves

2、a speedup of up to 114X over TensorFlow on a 40-core GPUnode,and up to8.3X that of TensorFlowwitha single V100 GPU.Dedicated:Training with Terabyte models on single/ multi-nodesGPU hash table and dynamic insertion on stream trainingSupporting variants recommendation models: WDL / DCN / DeepFM / DLRM

3、 etcEasy to use and Flexible: Python/C+ interface, JSON-based Network Configuration#page#Framework for Recommendation SystemEmbedding for stream training High performance GPU hashtable based on cudfSupporting dynamic insertionResolving colision in flyUnified EmbeddingEmbeddingALembeddings (multi fea

4、ture fields) in oneHashtableHashtableHashtableHashtableFused Computation / Transaction / UpdateSorting based parameter update to reduce memory footprintSparse InputsNatively multi-hot supportDistriibute Embeddings to multi GPU#page#AGENDAIntroductionWhat is special of HugeCTR EmbeddingUsage Guide 8

5、SamplesHow to define DNN models with the pluginPerformancePerformance comparison#page#INTRODUCTION#page#HugeCTR Embeddingmax_nnzbatch_size * slot numInputHash TableEmbedding TableOutputDataUnifies multi slots (feature fields)into one embedding table.GPU hash table to support dynamic insertion in str

6、eam trraining#page#HugeCTR EmbeddingCSR 1Hash Table 1Embedding Table 1Output 1Reduce ScatterCSR2Hash Table 2Embedding Table 1Output 2InputDataCSRnOutput nHash Table nEmbedding Table nHash table and embedding table are both split.when looking up embedding vectors, each GPU works independently.After t

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(将 HugeCTR Embedding 集成于 TensorFlow.pdf)为本站 (X-iao) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠