1、#page#page#page#page#page#page#高性能计算中GPU的优势开发周期短较FPGA的优势人工智能|深度学习原生的云部署能力快速应对市场需求学习信道增强接收机性软件环境下的快速编开放式标准定义的接能译、调试口的硬件良好的代码重用性(e.g.cuFFT,基于神经网络增强的信对应不同场景的高速CuBLAS)实时的按需部署号处理链接多种接入技术的高度从根本上避免了定点基于神经网络的信号重更强大的计算能力设计灵活的切割及融合建(autoencoder)(variable precision)软件升级软件开发调试的易用与边缘计算的结合提升性用户体验#page#page#page#c
2、uBBSDK概览8ansAHdn两个核心软件工具集(SDKs)FHVObrry-cuvNF:low-latency GPUDataplacomentO-RANformatingDirect to GPU memoryCUVNF-cuBB:accelerated 5GhighlyPlatformFeaturestuned for NVIDIA GPUsGPUDPDKGPUDircrRDMAeCPRwnticationHeaderfdatasplitSynchronized transmissioToolkit &DriversCUDA ToolkitMellanox OFED最小应用集=cuPH
3、Y+GPUDPDKHardwareGPUMellanox NICPCleswitchCPUfIOLu#page#基于RDMA的数据交互NCONICONFV KenelGPUCPUGCPUNIC1NC1NICONICOPacketNFV KemlGPUNIC1NIC1CPUcontrolplane#page#并行化数据传输处理CPURLCMACPHY controlplane:CuPHY ControllerCuPHY PipelineNICNICBackhaulInterfaceFronthaulnterfaceCPU MemoryGPU MemoryGPU MemoryCuPHY Pipel
4、ineGPU:PHY data planeZnVIDIA#page#page#云原生架构CUDA-X RAN VNF ContainerCUMAC LibraryCUPHY LibraryeCPRI Packet DecodingKuberneteson NVIDIANVFI HostGPUsNVIDIA Container RuntimeGPU DPDKCUDAGPU DirectNVIDIA GPUMellanox NIC#page#page#RAN可编程性一灵活方案订制High PHYCRCTBCRC5GPacket Core Networks-0pt6UPCdecodinaLDPCen
5、codinaRateMatchingRate matchingPUCRLCMACChannCHalPrecodingHieh PHYLow PHY-0pt7.2REdemappingREmappinBLowPHYxIbeamformingbeamformlr-0pt7.1OFDMOFOMcdulati-0pt8-Uplin#page#page#page#CUDA FOR 5G PHYHierarchical programmingCuda C codingAerialSDK:几乎囊括了所有物理层的实现,信道估计、信道均衡、LDCP编码/解码、速率匹配、校验、波束赋形等Cudalib Sig.P
6、rocCuda信号处理:高度优化的算数操作和矩阵运算Cudaccoding:并行化的定制设计AerialSDKRVIDL#page#SDK测试模式cuBB可以通过如下方式快速验证开发Mode1:测试向量模式-ExecutiontimeCuBBSimulation-CRC outputCuPHYScript-CUPHYperformanceBiepMode2:对接模式EthernetRRUPacketsReceiver +cuBBGeneratorHDF5模拟器CUPHYCACK2atency#page#page#G