您的当前位置:首页 > 报告分类 > PDF报告下载

2019年风能发展及投资报告 -IRENA(英文版)(88页).pdf

编号:19248 PDF 88页 9.35MB 下载积分:VIP专享
下载报告请您先登录!

2019年风能发展及投资报告 -IRENA(英文版)(88页).pdf

1、FUTURE OF WIND Deployment, investment, technology, grid integration and socio-economic aspects A Global Energy Transformation paper IRENA 2019 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknow

2、ledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN

3、 978-92-9260-155-3 Citation IRENA (2019), Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi. This document presents additional findings from Global Energy Transforma

4、tion: A roadmap to 2050 (2019 edition) available for download from www.irena.org/publications. For further information or to provide feedback, please contact IRENA at infoirena.org. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that serves as the

5、principal platform for co-operation, a centre of excellence, a repository of policy, technology, resource and financial knowledge, and a driver of action on the ground to advance the transformation of the global energy system. IRENA promotes the widespread adoption and sustainable use of all forms o

6、f renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. Acknowledgements This report benefited from input and review of the following expert

7、s: Elbia Gannoum and Selma Bellini (ABEElica Brazil Wind Energy Association), Kaare Sandholt (China National Renewable Energy Centre), Qin Haiyan and Yu Guiyong (Chinese Wind Energy Association), Lucy Craig, Jeremy Parkes and Vineet Parkhe (DNV GL Energy), Xue Han (Energy Research Institute of China

8、), Karin Ohlenforst and Feng Zhao (Global Wind Energy Council), Laura Cozzi and Alberto Toril (International Energy Agency), Karsten Capion (Klimaraadet The Danish Council on Climate Change), Kihwan Kim (Korea Energy Economics Institute), K. Balaraman (National Institute of Wind Energy India), Jeffr

9、ey Logan and Mai Trieu (National Renewable Energy Laboratory), Yuan Jiahai (North China Electric Power University), Aled Moses, yvind Vessia and Sune Strm (rsted), Ntombifuthi Ntuli (South African Wind Energy Association), Yasushi Ninomiya (The Institute of Energy Economics, Japan), Rina Bohle Zelle

10、r (Vestas Wind Systems A/S), Ivan Komusanac (WindEurope) and Stefan Gsnger (World Wind Energy Association). Valuable review and feedback were provided by IRENA colleagues: Francisco Boshell, Yong Chen, Rafael De S Ferreira, Celia Garca-Baos, Rabia Ferroukhi, Gurbuz Gonul, Carlos Guadarrama, Diala Ha

11、wila, Seungwoo Kang, Rodrigo Leme, Paul Komor, Neil MacDonald, Julien Marquant, Thomas Nikolakakis, Bishal Parajuli and Michael Taylor. The editor of this report was Lisa Mastny. Contributing authors: This report was developed under the guidance of Dolf Gielen and Ricardo Gorini and authored by Gaya

12、thri Prakash and Harold Anuta, with additional contributions and support from Nicholas Wagner and Giacomo Gallina. IRENA is grateful for the generous support of the Federal Ministry for Economic Affairs and Energy of Germany, which made the publication of this report a reality. Disclaimer This publi

13、cation and the material herein are provided “as is”. All reasonable precautions have been taken by IRENA to verify the reliability of the material in this publication. However, neither IRENA nor any of its officials, agents, data or other third- party content providers provides a warranty of any kin

14、d, either expressed or implied, and they accept no responsibility or liability for any consequence of use of the publication or material herein. The information contained herein does not necessarily represent the views of the Members of IRENA. The mention of specific companies or certain projects or

15、 products does not imply that they are endorsed or recommended by IRENA in preference to others of a similar nature that are not mentioned. The designations employed, and the presentation of material herein, do not imply the expression of any opinion on the part of IRENA concerning the legal status

16、of any region, country, territory, city or area or of its authorities, or concerning the delimitation of frontiers or boundaries. 2 FIGURES 4 TABLES 7 ABBREVIATIONS 8 EXECUTIVE SUMMARY 9 1 ENERGY TRANSFORMATION PATHWAYS AND WIND ENERGY 14 1.1 PathwaysfortheGlobalEnergyTransformation 14 1.2 TheEnergy

17、Transformation:Rationale 15 1.3 GlobalEnergyTransformation:Theroleofwindenergy 17 2 THE EVOLUTION AND FUTURE OF WIND MARKETS 22 2.1 Evolutionofthewindindustry 22 2.2 Onshorewindoutlookto2050 24 2.3 Offshorewindoutlookto2050 42 3 TECHNOLOGICAL SOLUTIONS AND INNOVATIONS TO INTEGRATE RISING SHARES OF W

18、IND POWER GENERATION 62 4 SUPPLY SIDE AND MARKET EXPANSION 67 4.1 Currentstatusofwindsupplyindustry 67 5 SOCIO-ECONOMIC AND OTHER BENEFITS OF WIND ENERGY IN THE CONTEXT OF ENERGY TRANSFORMATION 70 5.1 Windsectoremploymentandlocalvaluechain 70 5.2 Clusteringwithotherlow-carbontechnologies:Hybridsyste

19、ms 74 6 ACCELERATING WIND POWER DEPLOYMENT: EXISTING BARRIERS AND SOLUTIONS 75 REFERENCES 83 CONTENTS 3 FIGURES FigureES1. Windroadmapto2050:trackingprogressofkeywindenergyindicators toachievetheglobalenergytransformation. 12 Figure1: Pressingneedsandattractiveopportunitiesaredrivingthetransformatio

20、nof theworldsenergysystem 16 Figure2. Renewablesandefficiencymeasures,boostedbysubstantialelectrification, canprovideover90%ofnecessaryCOemissionreductionsby2050. 17 Figure3. Windwouldbethelargestgeneratingsource,supplyingmorethanone-thirdoftotal electricitygenerationneedsby2050 19 Figure4. Comparis

21、onofscenariosfortheglobalenergytransition,withafocusonwindpower generation. 20 Figure5. Windpowerwouldcontributeto6.3GtofCOemissionsreductionsin2050,representing 27%oftheoverallemissionsreductionsneededtomeetParisclimategoals. 21 Figure6: Overviewofkeymilestonesachievedbythewindindustrysofarsince198

22、2. 23 Figure7: Onshorewindcumulativeinstalledcapacitywouldgrowmorethanthree-fold by2030andnearlyten-foldby2050relativeto2018levels. 25 Figure8: Asiawouldcontinuetodominateglobalonshorewindpowerinstallationsby2050, followedbyNorthAmericaandEurope. 27 Figure9: Globalonshorewindpoweradditionswouldneedt

23、ogrowmorethanthree-fold by2030andmorethanfive-foldby2050relativeto2018levels. 28 Figure10: Totalinstalledcostofonshorewindprojectshavefallenrapidlyandisexpected todeclinefurtherby2050. 33 Figure11: TotalInstalledcostrangesandweightedaveragesforonshorewindprojects droppedinmanycountry/regionsince2010

24、. 34 Figure12: Theglobalweightedaveragecapacityfactorfornewturbineshasincreasedfrom27% in2010to34%in2018andwouldincreasesubstantiallyinnextthreedecades. 35 Figure13: RegionalweightedaverageLCOEandrangesforonshorewindin2010and2018. 35 Figure14: TheLevelisedcostofElectricityforonshorewindisalreadycomp

25、etitivenowcompared toallfossilfuelgenerationsourcesandwouldbefullycompetitiveinafewyears. 36 4 Figure15: LCOEandglobalweightedaveragevaluesforonshorewindprojects,20102020. 37 Figure16: Scalinguponshorewindenergyinvestmentiskeytoacceleratethepaceofglobal onshorewindinstallationsoverthecomingdecades.

26、38 Figure17: totalinvestmentsinglobalonshoreannualwindpowerdeployment,including newcapacityinstallationsandreplacementofend-of-lifetimecapacities. 39 Figure18: Ongoinginnovationsandtechnologyenhancementstowardslarger-capacity turbines,increasedhubheightsandrotordiameterswouldimproveenergyyields andr

27、educecapitalandoperationcostsperunitinstalledcapacity. 40 Figure19: Offshorewindpowerdeploymenttogrowgraduallytonearly1000GWof totalinstalledcapacityby2050. 43 Figure20: Asiawoulddominateglobaloffshorewindpowerinstallationsby2050, followedbyEuropeandNorthAmerica. 44 Figure21: Annualoffshorewindcapac

28、ityadditionswouldneedtoscaleupmorethan six-foldto28GWin2030andalmostten-foldto45GWin2050from4.5GW addedin2018. 45 Figure22: Theglobalweightedaverageinstalledcostsforoffshorewindhavedeclinedbya modest5%since2010andwoulddeclinegreatlyinthenextthreedecades. 47 Figure23: Theglobalweightedaveragecapacity

29、factorforoffshorewindhas increased8percentagepointssince2010,to43%,andupcomingprojects wouldhavecapacityfactorsuptohigherrangeof58%in2030and60% in2050. 49 Figure24: By2050,theLCOEofoffshorewindwouldbecompetitive,reachinglower fossilfuelranges. 50 Figure25: LCOEandglobalweightedaveragevaluesforoffsho

30、rewindprojects,20102025. 51 Figure26: Globaloffshoreannualwindpowerdeploymenttotalinvestmentsincluding newcapacityinstallationsandreplacementsofend-of-lifetimecapacities. 52 Figure27: Investmentswouldneedtobeshiftedtoemergingoffshorewindmarketssuchas AsiaandNorthAmericafollowedbystableinvestmentsnee

31、dedinEurope. 53 Figure28: Anticipatedtimingandimportanceofinnovationsinoffshorewindtechnology. 55 5 Figure29: Theaveragesizeofoffshorewindturbinesgrewbyafactorof 3.4inlessthantwodecadesandisexpectedtogrowtooutputcapacityof 1520MWby2030. 56 Figure30: OffshoreCoastalwindpower:potentialoffloatingoffsho

32、rewindpower zoominChina 57 Figure31: Offshorewindturbinefoundationtechnologies. 58 Figure32: HighersharesofwindpowerwouldbeintegratedinvariousG20countriesby2050 63 Figure33: Additionalinvestmentsarerequiredingrids,generationadequacyandsome flexibilitymeasures(suchasstorage)acrosstheentireelectricity

33、systemto integrateraisingsharesofvariablerenewablesources. 64 Figure34: Powersystemflexibilityenablersintheenergysector. 65 Figure35: TheFourdimensionsofinnovation. 66 Figure36: In2018,Vestasremainedastheworldslargestwindturbinesupplier followedbyGoldwindandSiemens-gamesa. 67 Figure37: Gearedwindtur

34、binesystemscontinuetobethepreferredturbinetechnology basedonmarketsizein2018. 68 Figure38: Theonshoreandoffshorewindindustrieswouldemploymorethan 3.7millionpeopleby2030andmorethan6millionpeopleby2050. 70 Figure39: WomeninSTEM,NON-STEMtechnicalandadministrativejobsin theenergysector 71 Figure40: Mate

35、rialsrequiredfora50MWonshorewindplantanda500MW offshorewindplant. 73 Figure41: Distributionofhumanresourcesandoccupationalrequirementsalongthevaluechain (50MWonshorewind,500MWoffshorewind). 73 Figure42: Existingbarriersinthewindenergysector. 75 Figure43: Thepolicyframeworkforajusttransition. 76 6 TA

36、BLES Table1: Offshorewinddeploymentsandtargetsincountries. 46 Table2: High-potential-impacttechnologiesinapproximateorderofpriority. 54 Table3: EstimatedfloatingwindpotentialinChinafordifferentdepthsand averagewindpowerdensities. 57 Table4: Technicalpotentialforfloatingwindinmajoreconomies. 58 Table

37、5: Countrystatusandforecastsonfloatingoffshorewindpowerdeployment. 59 Table6: Domesticwindmarketsasof2018. 69 Table7: Hybridrenewabledevelopmentsincountries. 74 Thevisualisationillustrates the changes witnessed in temperaturesacrosstheglobeoverthepastcenturyand more.Thecolourofeachstriperepresentsth

38、etemperatureofasingleyear,orderedfromtheearliestavailable dataateachlocationtonow.Thecolourscalerepresentsthechangeinglobaltemperaturescovering1.35C. Annual global temperatures from 18502017Warming Stripes,byEd Hawkins,climatescientistinthe NationalCentreforAtmosphericScience(NCAS)attheUniversityofR

39、eading. 7 FUTURE OF WIND ABBREVIATIONS C degreeCelsius AC alternatingcurrent CAGR compoundannualgrowthrate CAPEX capitalexpenditure CMS conditionmonitoringsystems CO carbondioxide CSP concentratingsolarpower DC directcurrent DOE USDepartmentofEnergy EU EuropeanUnion EV electricvehicle G20 GroupofTwe

40、nty GBP Britishpound Gt gigatonne GW gigawatt GWEC GlobalWindEnergyCouncil HVAC high-voltagealternatingcurrent HVDC high-voltagedirectcurrent IRENA InternationalRenewableEnergyAgency IPCC IntergovernmentalPanelonClimateChange km squarekilometre kW kilowatt kWh kilowatt-hour LCOE levelisedcostofelect

41、ricity m squaremetre MW megawatt MWh megawatt-hour NDC NationallyDeterminedContributions NREL USNationalRenewableEnergyLaboratory O IEA World Energy Outlook Sustainable Development Scenario (WEO-SDS) (IEA, 2018a); DNV GL, 2018; Teske, 2019; BNEF, 2018; Greenpeace, 2015 and Equinor, 2018a. Thecompari

42、sonalsosuggeststhatthegoaloflimitingglobaltemperatureincreasetowellbelow2Cwould bemostachievablewithloweroverallenergydemand(totalprimaryenergysupply),whileachievingthe 1.5Ctargetwouldalsorequiresignificantstructuralandlifestylechanges. However, despite the similarities, differences can also be foun

43、d in the scenarios in aspects such as the level of electrification in end-use sectors and reductions in CO emissions.Thedivergenceinresultscan beexplainedmainlybythedifferentobjectivesbehindthescenarios.Formany,theanalysisisdefinedbythe needtoreduceenergy-relatedCOemissionstolimitthetemperatureincre

44、asetobetween2Cand1.5C. Othershavemodelledtheenergysysteminamoreconservative(business-as-usual)way. With regard to the total installed capacity levels by 2050, IRENAs REmap Case, with more than 6 000 GW of wind capacity, is in the median range compared to other energy transition scenarios.IRENAswind

45、capacityprojectionfor2050iswellbelowGreenpeaceswindcapacityprojectionofmorethan8000GWand Teskes100%renewablesscenariowithtotalwindcapacityofaround7700GW,whilehigherthantheWorld EnergyCouncilsprojectionofaround3000GW. 010 00020 00030 00040 00050 00060 00070 00080 000 5% 10% 15% 20% 25% 30% 35% 40% Wi

46、nd share in generation Total electricity generation (TWh) SHELL-SKY (2050) DNV-GL (2050) TESKE (2050) GREENPEACE IRENA-REMAP (2050) EQUINOR IEA- WEO SDS (2040) BNEF (2050) Wind generation projections in energy scenarios IRENA REMAP (2040) 20 Figure 5: Wind power would contribute to 6.3 Gt of CO emis

47、sions reductions in 2050, representing 27% of the overall emissions reductions needed to meet Paris climate goals. ACCELERATED WIND POWER DEPLOYMENTS CONTRIBUTES TO CO EMISSIONS REDUCTIONS Among all low-carbon technology options, accelerated deployment of wind power when coupled with deep electrific

48、ation would contribute more than one-quarter of the total emissions reductions needed (nearly 6.3 Gt CO) in 2050. ENERGY-RELATED CARBON EMISSIONS MITIGATION POTENTIAL OF WIND POWER Deploying more than 6 000 GW of wind power capable of generating more than one-third of total electricity needs in 2050

49、 would potentially mitigate a massive amount of energy-related carbon emissions (6.3gigatonnes(Gt)ofCO),whichismorethanone- quarterofthetotalemissionsreductionpotentialfrom renewablesandenergyefficiencymeasures(Figure5). Amongalllow-carbontechnologyoptions,windpower contributestomajoremissionsreductionpotentialby 2050.Thisisduemainlytolargedeploymentsofwind powerreplacingconventionalpowergenerationsources byutilisingtheampleresourceavailabilitywiththebest technological solutions at better resource locations across various regions and benefiting from drastic

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(2019年风能发展及投资报告 -IRENA(英文版)(88页).pdf)为本站 (风亭) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
会员购买
客服

专属顾问

商务合作

机构入驻、侵权投诉、商务合作

服务号

三个皮匠报告官方公众号

回到顶部