1、出品机构:甲子光年智库智库院长:宋涛撰写人:刘瑶 王艺霖 李哩莉时间版本:2024.10前言:生成式AI爆发后迎来商业加速,代码领域迎来创新及变革契机随着人工智能技术的飞速发展,大模型(包括开源模型及闭源模型)的数量和能力都在显著增长,为生成式AI应用的爆发提供了坚实的技术基础。代码及开发领域具备广泛的高质量数据、丰富的应用场景及多样的用户人群,因此生成式AI为代表的技术提供了生产力的创新空间和发展潜力。Llama3 70b InstructQwen1.5-32B-ChatZephy-orpo-141bGPT-4Claude1GPT-3.5 TurboGPT-4Claude2GPT-3.5 T
2、urboGPT-4GPT-4Gemini ProMistral MediumClaude 3 OpusGPT-4 TurboClaude 3 SonnetClaude 3 HaikuMistral LargeVicuna 33BLlama-2-70b-chatLlama-2-13b-chatMPT-30B-chatVicuna-13B-v1.5Llama-2-7b-chatWizardLM 70bYi-34BSOLAR-10.7B-Instruct-v1.0OpenHermes-2.5-Mistral-7BDeepSeek-LLM-67B-ChatMixtral Instruct 8x7BOp
3、enChat-3.5Gemma-1.1-7B-itDBRX InstructStarling-LM-7B-betaLlama3 8b Instruct105011001150120012502023.32023.52023.72023.92023.112024.12024.32024.5闭源模型开源模型Arena ELO大模型的数量及能力均不断上升,AIGC应用爆发具有技术基础数据截止2024年5月模型技术的蓬勃发展为“AI+”领域/场景/行业的发展提供坚实的基础及发展创新的土壤代码结合AI迎来创新机会开发领域亟待生产力升级高质量的数据通用性的需求广泛的使用人群目 录Part 01机遇:AIG
4、C引发的数字生产变化Part 02价值:重新构建代码开发的应用范式Part 04展望:人工智能普惠时代的期待Part 03落地:智能时代AI+代码的先行者需求破局:“AI+”的工作方式成为首选,释放代码工程的生产力编写代码,理解代码及互联网搜索、调试、写注释、写测试等工作是开发者的高频工作需求,因此解决围绕代码解决问题实际上解决开发者最高频刚需问题,随着生成式AI技术能力提升,更多的开发者都在尝试使用AI解决问题。开发者最耗时的活动79%47%31%30%29%21%16%12%9%9%6%6%编写代码理解代码互联网搜索调试编写代码注释或代码文件编写测试执行代码审查重构在代码库中搜索代码段了解
5、最近的代码更改编写提交消息在CLI中执行操作JetBrains,State of Developer Ecosystem Report(2023)开发者使用AI编程工具的比例92%70%开发者认可AI的比例57%53%51%41%提高编程技能变得更有效率创造性工作防止倦怠开发者使用AI代码生成可提升工作效果开发者会选择尝试AIAI编码提升自身的效率及技能水平GitHub(2023)编写修改注释测试代码及开发工作不仅仅是“脑力活”,也是“体力活”“AI+代码”的技术历程简述技术升级:大模型赋予了“AI+代码”更多的创新空间AI生成代码的应用思路可以追溯到AI技术应用初期,但往往受限于当时的AI技
6、术所体现的智能化水平。大型语言模型(LLMs)的出现为深度学习带来了新的范式,尤其是针对语言类型的数字内容生成能力提升,因此也为“AI+代码”进一步发展带来了更多创新空间。基于知识工程/专家系统基于统计学习/数据驱动基于深度学习(中小模型)大模型为代码生成带来了“质”的改变LLMs给“AI+代码”提供了一个突破性技术方案:LLM带来了深度学习新范式,思维链和强大的自然语言理解能力,从而理解程序员的需求和意图,自动生成符合规范或者采纳率更高的代码片段或完整功能模块,从而让创建广泛应用且实用的AI代码平台成为可能。并且推动了开发者的编程习惯和开发方式发生转变,虽然工作重心依然在代码编写上,但与AI