阿丘科技:2024生成式AI如何改变AI缺陷检测的传统范式白皮书(11页).pdf

编号:178181 PDF  DOCX 11页 909.50KB 下载积分:VIP专享
下载报告请您先登录!

阿丘科技:2024生成式AI如何改变AI缺陷检测的传统范式白皮书(11页).pdf

1、生成式AI如何改变AI缺陷检测的传统范式阿丘科技产品实战系列白皮书CONTENTS目录01产品背景产生背景生成式AI 生成式AI带来的客户价值01020202实现原理实现原理0403典型应用外观缺陷检测装配异常检测 字符异常检测异物附着检测0606070704未来展望技术发展趋势:数据+生成式AI行业应用拓展:以数据为中心的平台080801(1)自动化和智能化对AI视觉的需求随着自动化和智能化技术的快速发展,机器学习和视觉自动化技术在制造业中的应用越来越广泛。这些技术可以帮助企业实现自动化检测、分类、识别等任务,提高生产效率和产品质量。但机器学习和视觉自动化技术的应用需要大量的高质量数据来训练

2、AI模型。如果没有足够的训练数据,模型的性能将受到很大的影响。因此,如何快速、高效地获取大量多样化的数据成为了现代制造业中亟待解决的问题。(2)当下制造业所面临的数据挑战在当今的现代制造业中,各类厂商均面临着诸多严峻的挑战。一方面,市场竞争日益激烈,消费者对产品质量和个性化的要求不断提高。另一方面,随着自动化和智能化技术的快速发展,企业需要不断进行技术升级和创新,以保持竞争力。然而,传统数据收集和拓增方式已经无法满足现代制造业对机器学习和视觉自动化技术的需求。首先,传统的数据收集方式需要大量的人力、物力和时间投入。通常,企业需要对大量的产品进行实际生产、跑料拍照、人工值守才能获得缺陷样本,亦或

3、通过人工手动破坏,从而制造缺陷。这种方式效率低下,耗时数月,且容易出现样本遗漏或错判,成本高昂。其次,传统的数据收集方式难以在可控的时间内获得足够多样和高质量的数据来训练模型。在复杂的生产环境中,数据的多样性至关重要。不同的产品、不同的生产条件、不同的缺陷类型都需要一定量的特定数据来支撑模型的训练。但在有限时间内收集到的数据往往具有局限性,无法涵盖所有可能的NG情况,这就导致模型的泛化能力不足,难以应对实际生产中的各种变化。此外,训练数据的均衡性同样是一个重要挑战。在实际生产中,OK样本或常见NG通常远多于偶发NG样本,这种数据分布的不均衡会导致模型对NG类别的识别能力较差。例如,在缺陷检测任

4、务中,如果训练数据中绝大多数都是常见NG和OK样本,模型可能会倾向于将偶发待检样本都判断为正常,从而降低了对缺陷的检出率。而且,数据集的缺陷质量、多样性也会影响模型性能。在数据采集过程中,可能会因为设备误差、人为错误或环境干扰等原因导致收集的训练数据标准不准确或不一致;亦或者NG数据的多样性不够(比如光照、NG 位置、角度等),导致训练出来的模型对训练数据集过拟合,忽略了待检缺陷的多种形态。这些问题如果不能及时发现和纠正,将会直接影响到模型的训练效果和最终性能。最后,基于专业图像编辑软件(例如Photoshop)的数据扩充方式需要专业人员投入大量时间制作,且高度依赖人员技能,难以保证训练数据可

5、用性。一.产品背景1.产生背景02生成式AI是一种可以创建虚拟图像内容和想法(包括局部缺陷图、带产品背景的全局缺陷图等)的AI技术。它基于大规模深度学习模型,通过分析和学习大量工业缺陷特征数据中的模式和关系,来生成原创的NG图像。生成式AI可以帮助解决传统NG数据收集和处理中遇到的多个挑战:(1)降低数据生产成本传统的数据采集方式需要大量的人力、物力和时间投入,而生成式AI技术可快速输出合成缺陷数据和对应的标注信息,用户无需进行实际的采集和缺陷制造工作。而且,结合特定领域或行业的缺陷理解、技术优化、数据多样化的方法论,生成式AI技术可在短时间内生成大量的逼真的多样化数据,为模型训练提供充足的数

6、据源。不仅节省了人力、物料成本,还提高了数据的质量和一致性。2.生成式AI 3.生成式AI带来的客户价值增加数据多样性。生成式AI可以基于有限的真实数据,生成大量的合成数据,扩充缺陷姿态的覆盖范围。平衡数据分布。生成偶发稀缺的缺陷类别样本,缓解训练数据不平衡的问题,提高模型对稀有事件的识别。提高数据质量。通过海量的预训练,模型学习缺陷之间的内在规律,进而生成高质量、一致性强的数据样本,减少训练集中的噪声和误导。增强数据相关性。可以根据最新的生产状况及时生成新的过漏检NG,保持数据的时效性。实时数据更新随生产环境变化定期点检,并优化数据集,确保模型有效性和准确性标注质量缺 陷 数 据 准 确 完

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(阿丘科技:2024生成式AI如何改变AI缺陷检测的传统范式白皮书(11页).pdf)为本站 (Flechazo) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠