大规模 Embedding 训练优化实践.pdf

编号:169143 PDF 33页 1.60MB 下载积分:VIP专享
下载报告请您先登录!

大规模 Embedding 训练优化实践.pdf

1、Large-Scale Embedding Training in Tensorflow&PytorchHui Kang,Shijie Liu,Nvidia Devtch software engineer|2024/06/22IntroductionSparse Operation Kit for TensorflowTorchRec Optimization for PytorchAgendaIntroductionMulti-stage Recommender System Pipelineand Scope of This PresentationOur FocusDeep Learn

2、ing Recommendation Models(DLRM)Simplified View Bottom MLPso Process dense input features,often independent to the embedding lookups Embedding tableso Map one-hot/multi-hot categorical features into the embedding vectors Interactiono Learn effective feature crosses Top MLPso Output the final recommen

3、dation result,e.g.,click probabilityEmbeddingTable 0EmbeddingTable NCategoricalfeature 0Categoricalfeature N.InteractionBottomMLPsNumerical featuresTopMLPs.Goals of This Presentation Introduce Sparse Operation Kit,a TensorFlow plugin to accelerate large scale embedding training Introduce our optimiz

4、ation on TorchRec Share the achieved multi-gpu training performanceSparse Operation Kit For TensorflowSparse Operation Kit Sparse Operation Kit(SOK)is a Python package wrapped GPU accelerated operations dedicated for sparse training/inference cases.SOK,as a plugin for TensorFlow,provides model paral

5、lelism functionality for the embedding part.What are the challenges in the embedding part of model parallelism?Embedding table storage The embedding table is very large and requires a significant amount of storage space.Due to the limited memory of GPUs,it is not possible to store large embedding ta

6、bles.Many users choose TensorFlows PS architecture to train large embedding tables.However,when using the PS architecture for training,network bandwidth often becomes the bottleneck that restricts training speed.The indices of the embedding table are generally hashed,requiring the embedding table to

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(大规模 Embedding 训练优化实践.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠