Increasing Energy Efficiency of Server Cooling Over Traditional Methods with a Deep Reinforcement Learning Agents running on an OCP Compliant BMC platforms.pdf

编号:161456 PDF 17页 1.43MB 下载积分:VIP专享
下载报告请您先登录!

Increasing Energy Efficiency of Server Cooling Over Traditional Methods with a Deep Reinforcement Learning Agents running on an OCP Compliant BMC platforms.pdf

1、AI-ML model for dynamic server fans speed control achieves better energy efficiency than the traditional fans control methods.Model runs on an ML engine of a BMC chip.Increasing Energy Efficiency of Server Cooling Over Traditional Methods with a Deep Reinforcement Learning Agents Running on an OCP C

2、ompliant BMC PlatformsRaghu Kondapalli,Chief Technology Officer,Axiado CorporationSundaram Arumugasundaram,Principal Security Architect,Axiado CorporationZhichao Zhang,Principal Machine Learning Architect,Axiado CorporationIncreasing Energy Efficiency of Server Cooling Over Traditional Methods with

3、a Deep Reinforcement Learning Agents running on an OCP Compliant BMC platformsDC SustainabilitySUSTAINABILITYTCU chip consists of below components:1.App processors:cores for running apps like BMC,host vulnerability management,extended detection and Response(XDR)agents2.programmable AI engine to run

4、ML models like server thermal management3.Smart-NIC for control/management plane like BMC traffic4.hardware Root of trust(HRoT)and TPM(Trusted Platform Module)to enhance server securityAxiado offers Smart-SCM that is compliant with the Open Compute Project(OCP)datacenter-ready secure control module(

5、DC-SCM)standard.Trusted Control/Compute Unit(TCU)OverviewAI-Powered Dynamic Thermal Management(DTM)from BMC:BMC is ideal for server thermal management due to its existing role in various server management functions,including power control.Faster Thermal Prediction and Calibration:TCU collects sensor

6、 data directly,bypassing the host OS,enabling faster thermal prediction and fan speed calibration.Rich Dataset for Decision Making:As an OCP DC-SCM compliant BMC,TCU gathers comprehensive data from all chassis components(CPUs,GPUs,etc.)via diverse connections(I2C,eSPI,USB,PCI-e),providing a rich dat

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(Increasing Energy Efficiency of Server Cooling Over Traditional Methods with a Deep Reinforcement Learning Agents running on an OCP Compliant BMC platforms.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠