Analog In-memory computing with multilevel memristive devices for high performance computing - Glenn Ge - TetraMem Inc.pdf

编号:161423 PDF 24页 2.15MB 下载积分:VIP专享
下载报告请您先登录!

Analog In-memory computing with multilevel memristive devices for high performance computing - Glenn Ge - TetraMem Inc.pdf

1、Glenn Ge,Co-founder&CEOTetraMem Inc.Analog In-memory computing with multilevel memristive devices for high performance computing The AI and AI Chip MarketSource:ARK Big Idea 2022 AI applications will add$30 trillion to the global equity market capitalization during the next 2 decades and AI chip mar

2、ket will reach$150 billion at 2030 with 30%CAGR3Source:Global X 2023 OpenAIs Sora Ignites Increased Computing Demand41 minute of OpenAIs Sora video may take over an hour to generate=Without new efficient computing,we need 18,460,000 A100 to generate the videos daily watched in TikTok*.*Source:Video

3、picture from OpenAI&analysis from Minsheng Securities,2024Customer Pain-points For Energy Efficiency AMDs plenary talk,ISSCC 2023 AMDs plenary talk by Dr.Lisa Su,ISSCC 2023 In-Memory Computing(IMC)Solution For AI ComputingALUCache Memory(L1/L2/L3)ALUALUALUALUALUALUALUDRAM MemoryTraditional von Neuma

4、nn Architecture IMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC UnitIMC Architecture Data processed in the same physical location as it is stored with minimum intermediate data movement&storage=low power consumption Massive

5、parallel computing process by cross-bar array architecture with device-level grain cores=high throughput Computing by physical laws(Ohms law and Kirchhoffs current law)=low latency Data movementSuperior architecture,but right device is the keyTang etc.2019 Symposium on VLSI CircuitsNote:nvCIM=nonvol

6、atile compute in memory,PE:processing element SRAM:Very fast and little energy(pJ level)for data movement but very limited size(few K to a few hundred M Byte on chip)DRAM:Large memory size(GB)but high energy(1000 pJ level)and slow speed(ns)Computing Memory:Memory Device with Special Attributes For C

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(Analog In-memory computing with multilevel memristive devices for high performance computing - Glenn Ge - TetraMem Inc.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠