The Case for Computational Offload to CXL Memory Devices for AI Workloads.pdf

编号:161417 PDF 13页 672.60KB 下载积分:VIP专享
下载报告请您先登录!

The Case for Computational Offload to CXL Memory Devices for AI Workloads.pdf

1、The Case for Computational Offload to CXL Memory Devices for AI WorkloadsJon Hermes,Staff Software Engineer,Arm Ltd.The Case for Computational Offload toCXL Memory Devices for AI WorkloadsARTIFICIAL INTELLIGENCE(AI)AIWe imagine a future in which the use of dedicated far memory pools are commonoHow d

2、o we utilize these pools efficiently?oHow do we overcome latency and bandwidth limitations from CXL-attached memory?The rise of single-socket performance relative to interconnect performance(socket-socket,socket-device)is exacerbating the harm for memory-sensitive workloadsWe must support strategies

3、 that perform well when there is no option to run in local memory without the use of memory poolsIt should be possible to both mitigate performance losses and make use of CXL memory pools by dispatching targeted compute tasks to the pool.Vision for CXL and Disaggregated ComputeTwo primary test syste

4、ms:oPlatform TX(256G mem,dual socket 56-core TX2 99xx)oPlatform N1(512G mem,dual socket 120-core Arm N1)Using the same strategy from Azures Pond paper:oForce cross-socket NUMA access toimpose latency and limit bandwidthFar socket clock rate is slowed to better emulate a real deviceReal CXL hardware

5、should be no better in terms of latency or bandwidth than this emulationModeling CXL without CXL HardwareCXL DeviceCPU-DRAMCXL BridgeSocket 1Socket 0InterconnectLocal NodeRemote NodeIdeal System SetupEmulation SetupApplications have various levels of sensitivity to memory latency and bandwidth limit

6、ations and are not harmed uniformly.As a quick test,we broke out just one function(a sparse matrix multiply)from one of the models we wanted to test and saw these results:We first looked at offloading individual memory-sensitive functions within various AI workloads,then looked toward generalization

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(The Case for Computational Offload to CXL Memory Devices for AI Workloads.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠