卢翔龙-NVIDIA:LLM 推理和服务部署技术总结及未来展望-掘金.pdf

编号:159530 PDF 30页 12.29MB 下载积分:VIP专享
下载报告请您先登录!

卢翔龙-NVIDIA:LLM 推理和服务部署技术总结及未来展望-掘金.pdf

1、NVIDIA:LLM推理和服务部署技术总结及未来展望卢翔龙NVIDIA资深解决方案架构师目录C O N T E N T S大模型技术趋势01.TensorRT-LLM02.03.FP804.Triton Inference Server for LLM目录C O N T E N T S大模型技术趋势01.TensorRT-LLM02.03.FP804.Triton Inference Server for LLMProduction Language Apps Increasing need for deep learning in language applicationsChat,tran

2、slation,summarization,search,generation,etc.models are important for correct resultsModel accuracy directly correlates to helpfulness for users“Online”deployment require Ensure a great experience with applications Multi-functional,accurate models are large making them slow during inference&Deploying

3、 massive models for real-time applicationsMaking cost effective deployments challengingLarge Language Model EcosystemLlama,Falcon,Starcoder,ChatGLM,MPT,&more70-200 Billion parameter or moreRapid evolution makes optimization challengingLLaMaGPTFalconStarcoderChatGLMMPTImage from Mooler0410/LLMsPracti

4、calGuideYang,J.,Jin,H.,Tang,R.,Han,X.,Feng,Q.,Jiang,H.,Hu,X.(2023).Harnessing the Power of LLMs in Practice:A Survey on ChatGPT and Beyond.arXiv Cs.CL.Retrieved from http:/arxiv.org/abs/2304.13712Need a performant,robust,&extensible solution forcost-effective,real-time LLM deployments目录C O N T E N T

5、 S大模型技术趋势01.TensorRT-LLM02.03.FP804.Triton Inference Server for LLMTensorRT-LLM Optimizing LLM InferenceSoTA Performance for Large Language Models for Production DeploymentsChallenges:LLM performance is crucial for real-time,cost-effective,production deployments.Rapid evolution in the LLM ecosystem,

6、with new models&techniques released regularly,requires a performant,flexible solution to optimize models.TensorRT-LLMis an open-sourcelibrary to optimize inference performance on the latest Large Language Models for NVIDIA GPUs.It is built on TensorRT with a simple Python API for defining,optimizing

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(卢翔龙-NVIDIA:LLM 推理和服务部署技术总结及未来展望-掘金.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠