10 段石石Rethinking Large Language Models efficiency and performance.pdf

编号:158373 PDF 29页 5.88MB 下载积分:VIP专享
下载报告请您先登录!

10 段石石Rethinking Large Language Models efficiency and performance.pdf

1、Rethinking Large Language Models Efficiency and PerformanceShangHaiShangHaiOutline1.Trends of Large Models2.History and problem overview3.Parallelism Strategies&Tricks4.Kernels and Compiler5.FutureOutline1.Trends of Large Models2.History and problem overview3.Parallelism Strategies&Tricks4.New Appli

2、cationsTrends of Large ModelsShangHaiPowering computing industry for decadesDennards Scalingif the transistor density doubles,power consumption(with twice the number of transistors)stays the sameHuangs law states that the performance of GPUs will more than double every two years.Between 2006 and 202

3、1,GPU price performance(in terms of FLOPS/$)has tended to double approximately every 2.5 yearsML Models demands biuSevilla,Jaime,et al.Compute trends across three eras of machine learning.2022 International Joint Conference on Neural Networks(IJCNN).IEEE,2022.Larger model,Larger Corpus,better accura

4、cycorpus increasecorpus increase#parameter#parameter increaseincreaseKaplan,Jared,et al.Scaling laws for neural language models.arXiv preprint arXiv:2001.08361(2020).Emergence of LLMshttps:/ and problem overviewShangHaiBrief Histroy Of Large Model 20122016DistBelief;Parameter Server;Bosen;GeePS;2018

5、TF allreduce baidu;Horovod;DDP;Compute Graph and PlacementTransformer及其变种;流水线并行;大规模模型并行;2020Large language model wit FSL;PaLM:PathWayGoogle;CLIPOpenAI,连接图与文;Large Model:Sparse ModelsLarge Model:Deep ModelsLarge Model:Foundation ModelsProblem Overview:LLMs Need Huge FLOPSTransformer FLOPs Equation:C=

6、T6NDN:the number of parameters;D:the number of tokens that model is train on;LLM#Parameters(billion)#Tokens(billion)Model-FLOPSGPT31753003.15E+23LLaMa-65B6514005.46E+23LLaMa2-70B7020008.4E+23PaLM5407802.5272E+24Problem Overview:Gap between LLMs and Acceleratorhttps:/ Overview:Gap between LLMs and Ac

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(10 段石石Rethinking Large Language Models efficiency and performance.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠