Laurent Lafforgue_Expose_Lafforgue_AI-Theory_24_novembre_2023_watermark.pdf

编号:155589 PDF 11页 168.53KB 下载积分:VIP专享
下载报告请您先登录!

Laurent Lafforgue_Expose_Lafforgue_AI-Theory_24_novembre_2023_watermark.pdf

1、Reality and its representations:a mathematical modelLaurent Lafforgue(Huawei Paris Research Center,Boulogne-Billancourt,France)AI Theory WorkshopFriday November 24th,2023L.LafforgueRealityNovember 24th,20231/11The double expression of semantic contentsand its modelling by topos theory:mind images(=s

2、emantic contents)linguistic description#sketchingdrawings,schemesextrapolation77texts(=syntactic data)imaginationhh based oninterpretation!?understanding?Proposed mathematical model:Grothendieck toposesEsyntactic description%sketchingsites(C,J)completionC bCJ=E66(first-order“geometric”)theoriesseman

3、ticincarnationT 7 ET=Ejj=“small”category CT+J=topology=vocabulary(words)=extrapolation principle on C+axioms(grammar rules)L.LafforgueRealityNovember 24th,20232/11Why can we propose Grothendieck toposesfor modelling elements of reality?For us human beings:-Any aspects or elements of realitycan be de

4、scribed or at least talked aboutby appropriate forms of human language.-On the other hand,these linguistic descriptions are not unique.Reality is independent of its multiple descriptions.In topos theory:-Any topos E can be presented asa geometric incarnation of the semantic contentsof some formalize

5、d language T(technically,a“first-order geometric theory”)in the sense that there is an identificationpoints of the topos E models of the theory T.-Such a linguistic description of a topos E is not unique.Any topos E incarnates the semantics of infinitely many theories T.-This correspondence is compl

6、ete in the sense thatthe semantics of any such theory T is incarnated by a topos ET.L.LafforgueRealityNovember 24th,20233/11Geometric sketching of toposes:Start with an element of reality or semantic contentwhich is supposed to be mathematically incarnated byan unknown topos E.Technically,a topos is

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(Laurent Lafforgue_Expose_Lafforgue_AI-Theory_24_novembre_2023_watermark.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠