DataFunTalk复杂图迁移学习_2.pdf

编号:153258 PDF 30页 6.56MB 下载积分:VIP专享
下载报告请您先登录!

DataFunTalk复杂图迁移学习_2.pdf

1、Knowledge Transfer on Complex Graphs毕文东2024.1.27腾讯TencentA Brief IntroductionCONTENTS Introduction of Graph Knowledge Transfer(GKT)Knowledge Transfer on Graph Data Graph Knowledge Transfer on General DataApplying GKT on both graph and non-graph data2Wendong Bi2Knowledge Transfer on Complex GraphsCON

2、TENTS3Wendong Bi3Knowledge Transfer on Complex Graphs Introduction of Graph Knowledge Transfer(GKT)Knowledge Transfer on Graph Data Graph Knowledge Transfer on General DataApplying GKT on both graph and non-graph datap Graphs are powerful for describing and analyzing entities with relations/interact

3、ions in the real-world data.Webpage NetworksCommon networks in the real world Traffic NetworksBiomedical NetworksKnowledge GraphsWendong Bi4Why GraphsKnowledge Transfer on Complex GraphsData Hungry ProblemWendong Bi5p Data Hungry problem are ubiquitous in the real-worldDeep Learning methods needs ma

4、ssive high-quality dataKnowledge Transfer on Complex GraphsData HungryLow-quality:Web-data with weak annotation,noisy data,etc.Insufficiency:Few training samples for deep learning modelsDeep Learning methods needs massive high-quality dataKnowledge Transfer to Alleviate Data-Hungry Wendong Bi6Knowle

5、dge Transfer on Complex GraphsTransfer valuable knowledge from open-domain data is necessaryIdeal DataOpen Domain DataLow-quality&Large-quantity(Raw data from open domain)High-quality&Small-quantity(Data carefully annotated by humans)Are these large amounts of low-quality data really useless?Connect

6、ed&Transfer*数据来源于IDC数据时代2025Distribution Shift in Graph DataWendong Bi7Node Prediction/ClassificationuvLinkPredictionGraphPrediction/Classificationp Graph Representation Learning aims to learn representations for nodes on the graph,which usually can be divided into three levels(i.e.,Node,Edge,Graph)

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(DataFunTalk复杂图迁移学习_2.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠