2024-1-27真实复杂场景下的图神经网络-天津大学何东晓.pdf

编号:153243 PDF 55页 10.79MB 下载积分:VIP专享
下载报告请您先登录!

2024-1-27真实复杂场景下的图神经网络-天津大学何东晓.pdf

1、汇报人:何东晓汇报人:何东晓 天津大学天津大学 教授教授汇报时间:汇报时间:20232023年年1 1月月2727日日真实复杂场景下的图神经网络真实复杂场景下的图神经网络CatalogueAdversarial Representation Mechanism Learning for Network Embedding01Block Modeling-Guided Graph Convolutional Neural NetworksImproving Distinguishability of Class for Graph Neural NetworksContrastive Learn

2、ing Meets Homophily:Two Birds with One Stone020304Adversarial Representation Mechanism Learning for Network EmbeddingDongxiao He,et al.Adversarial Representation Mechanism Learning for Network Embedding,IEEE Transactions on Knowledge and Data Engineering(TKDE),2023,35(2):1200-1213.Introduction Graph

3、 representation learning:Graph representation learning aims to transform nodes on the graph into low-dimensionaldense vectors whilst still preserving the attribute features of nodes and structure features ofgraphs.表征学习图表征下游任务节点级别任务边级别任务图级别任务|d表征学习图表征下游任务节点级别任务边级别任务图级别任务34256798110=(,)|dIntroduction

4、Graph representation learning based on GCN:X=()1|()|Feature TransformationNeighborhood Aggregation12345678131313Neighborsof node 2(2)IntroductionGAN is inspired by the two-player game in game theory,which contains:A generator G(generating data that resemble real data).The generators goal is to foolt

5、he discriminator by generating data that are as similar to the real dataas possible.A discriminator D(distinguishing real data from generated data).The discriminators goalis to debunk the generator by discriminating between real data and generated data.GenerativeAdversarial Network(GAN):Introduction

6、ARGA:PreliminariesSymbolNotation=(,)an undirected,unweighted and attributed network =1,2,nodes=a set of edges ma set of node attribute=adjacency matrixThe objective of network embedding is to cast each of the nodes inthe network to a vector.Notations and the ProblemThe Approach-ArmGANAutoencoder wit

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(2024-1-27真实复杂场景下的图神经网络-天津大学何东晓.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠