HC2022.KAIST.DongseokIm.v03.pdf

编号:136917 PDF 25页 2.52MB 下载积分:VIP专享
下载报告请您先登录!

HC2022.KAIST.DongseokIm.v03.pdf

1、1 of 25HOTCHIPS 2022DSPU:A 281.6mW Real-Time Deep Learning-Based Dense RGB-D Data Acquisition with Sensor Fusion and 3D Perception System-on-Chip DSPU:A 281.6mW Real-Time Deep Learning-Based Dense RGB-D Data Acquisition with Sensor Fusion and 3D Perception System-on-Chip Dongseok Im,Gwangtae Park,Zh

2、iyong Li,Junha Ryu,Sanghoon Kang,Donghyeon Han,Jinsu Lee,Wonhoon Park,Hankyul Kown,and Hoi-Jun YooSemiconductor System Lab.School of EE,KAIST2 of 25HOTCHIPS 2022DSPU:A 281.6mW Real-Time Deep Learning-Based Dense RGB-D Data Acquisition with Sensor Fusion and 3D Perception System-on-Chip 3D Data in Mo

3、bile Platforms RGB-D data More Accurate and Versatile Applications CNN recognizes only 2D pictures,but real world consists of 3D objects RGB-D(3D)data enables the exact 3D object recognitionsTimeAccuracy(mAP)CVPR20406560555045CVPR16CVPR17CVPR18CVPR17ICCV193D-based2D-basedFace RecognitionAR/VR3D Geom

4、etryHigh AccuracyCVPR21ICCV213 of 25HOTCHIPS 2022DSPU:A 281.6mW Real-Time Deep Learning-Based Dense RGB-D Data Acquisition with Sensor Fusion and 3D Perception System-on-Chip DSPU:End-to-end 3D Perception SoC A 281 mW and 31.9 fps 3D Object Recognition Processor For Low-Power RGB-D Data Acquisition

5、CNN-based MDE&Sensor Fusion SW/HW Architecture For Real-time 3D Perception(e.g.3D Bounding Box)Window-based Search&Point Feature Reuse SW/HW ArchitectureUMPU Core#1UMPU Core#2UMPU Core#4UMPU Core#3UMPU Core#0UMPUCore#6UMPU Core#7UMPU Core#5DMU Core#0DMU Core#1DMU Core#2DMU Core#3RISC-V CoreInterconn

6、ect NetworkUPPU Core#0UPPU Core#1Interconnect Network3.6 mm3.6 mm1)MDE:Monocular Depth EstimationAligned Dense RGB-D3D Bounding BoxRGB DataRaw Depth Datat1t2t0Final ResultMonocular Depth EstimationSensor Fusion 3D PerceptionLow-Power and Real-Time DSPU SoCRGB Cam.Low-power ToFt2t04 of 25HOTCHIPS 202

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(HC2022.KAIST.DongseokIm.v03.pdf)为本站 (2200) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠