1、如何成为一个数据驱动型零售商 2010203367172636目录序言如何利用数据来实现零售业务的成功受数据驱动的零售商青睐的云提高客户获取和留存率Blue Apron:为现代分析学提供了更好的方法Zulily:实时增加收入和增强客户体验分析学推动更好的商品销售和分类决策The Home Depot:通过数据驱动的方法帮助实干家完成更多的工作Bed Bath&Beyond:加快全方位转型,更好地服务客户更有效地运营和供应链Charlotte Tilbury:提供数据导向的客户体验Carrefour:提供良好的零售体验,线上和线下如何成为一个数据驱动型零售商361%简介零售业的整体财务的成功与将
2、原始数据转化为可操作的见解有着直接的关系。从趋势预测、库存控制到营销策略和客户行为,也许没有哪个行业比它更加依赖数据了。新冠肺炎的到来令零售商在客户支持、订单执行和库存管理等领域快速的推出了数据驱动的现代化举措。购物者想要在去商店之前知道有什么可买,他们希望能有路边取货等满足他们多种需求的选择。这让许多零售商开始思考,如何才能更聪明地处理数据,更快地创造新的客户体验,更好地连接客户员工和客户同时采用可靠的、大规模的、安全的方法。如果可能的话,零售业不会很快恢复到疫情前的“正常”。尽管目前的气氛没有危机刚开始时那么紧张,但不确定性仍然是世界各地消费者日常生活的一部分。他们每天都在做决定,决定自己
3、想要怎样生活,以及为了适应“新常态”什么是重要的。例如,“路边取货”的全球搜索量在 2020 年同比增长了 3000%。这反映出购物者担心自己的安全,但随着时间的推移,其中一些人的行为发生了变化,新的行为变成了习惯。在谷歌的一项调查中,61%的美国消费者表示,即使没有受到限制,在网上购物和在实体店提货对他们来说也是一种有益的购物方式。对于零售商来说通过收集、处理、访问和分析数据的这些能力来应对消费者需求的变化。比以往任何时候都更加重要。对于数据驱动型零售商来说,更好地了解客户、预测需求、了解运营,并能够实时根据这些洞察采取行动,是一种能够在快速变化的环境中推动市场份额和收入增长的能力。全球范围
4、内,“路边取货”的搜索量同比增长了 3000%。1大多数美国消费者认为,在网上购物和在商店或路边买东西将是一种即使在没有限制的情况下,对他们购物也是有益的。212如何成为一个数据驱动型零售商3435457%尽管 57%的企业决策者表示,他们面临着由组织内不同团队管理的竖井数据的挑战,但通过采用正确的方法和结合正确的技术,数据驱动的转换是可以实现的。云中的人工智能(AI)和机器学习(ML)技术驱动的新数据分析能力,在历史上对大多数零售商来说是一个挑战,可以说这在不可能的粒度级别上将原始数据转化为更快、更智能、更可操作的决策。麻省理工学院技术评论(MIT Tech Review)发现,使用人工智能
5、和 ML 的公司可以 2 倍以上的推动数据驱动决策,决策速度上升 5 倍,并以 3 倍的速度执行。通过谷歌委托的研究发现,对于零售商来说,数据密集型 AI/ML 估计未来三年可以为该行业实现产值达到 2300 亿至 6500 亿美元。数据驱动的零售商能够利用各种系统(POS、CRM、营销平台、ERP等)的潜在数据,统一对事实的看法,推动从市场营销到业务运营的实时预测洞察,而不是将洞察作为过去业务业绩的后视图来回顾。例如,以前,为了接触到最有可能购买的人,零售商会把这些最近放弃了网站购物车的人们建立成一个网站访问者群体,然后联系他们,通过营销活动,让他们继续完成购买任务。这个过程可以通过谷歌营销
6、平台和谷歌 Cloud 自动完成,它不是确定哪些行为会导致购买,而是使用第一方数据通过购买倾向模型来预测未来购物者的行为。然后,零售商可以使用相同的模式在 Analytics 360 中建立受众,并将其分享给谷歌广告平台,如谷歌 Ads,将营销尽可能的集中在具有较高购买倾向的购物者身上。这种瞄准市场的能力可以改变游戏规则的游戏转换。类似的场景存在于零售业务的所有部分。关键是在整个组织内以简单而自动化的方式实现对洞察力和数据的民主化访问。5如何成为一个数据驱动型零售商未来三年,人工智能和 ML 技术可以为许多零售商提供预计销售额将达到 2300 亿至 6500 亿美元。的企业决策者面临着由组织内