1-3 图形神经网络中的超越同伦:当前限制、有效设计和对鲁棒性的影响.pdf

编号:102412 PDF 52页 10.23MB 下载积分:VIP专享
下载报告请您先登录!

1-3 图形神经网络中的超越同伦:当前限制、有效设计和对鲁棒性的影响.pdf

1、Beyond Homophily in GNNs:Current Limitations,Effective Designs,and Impacts on RobustnessJiong ZhuPh.D.StudentUniversity of MichiganJoint work with:Danai Koutra,Yujun Yan,Lingxiao Zhao,Mark Heimann,Leman Akoglu,Ryan Rossi,Junchen Jin,Donald Loveland,Michael Schaub,This Talk2 Generalizing Graph Neural

2、 Networks Beyond Homophily Beyond Homophily in Graph Neural Networks:Current Limitations and Effective Designs.NeurIPS 2020.Graph Neural Networks with Heterophily.AAAI 2021.Relationship between Heterophily and Robustness of Graph Neural Networks How does Heterophily Impact Robustness of Graph Neural

3、 Networks?Theoretical Connections and Practical Implications.KDD 2022.This Talk3 Generalizing Graph Neural Networks Beyond Homophily Beyond Homophily in Graph Neural Networks:Current Limitations and Effective Designs.NeurIPS 2020.Graph Neural Networks with Heterophily.AAAI 2021.Relationship between

4、Heterophily and Robustness of Graph Neural Networks How does Heterophily Impact Robustness of Graph Neural Networks?Theoretical Connections and Practical Implications.KDD 2022.Limitations&DesignsNode Classification4CyberSecurityBotUserBots?RecommendationSystemsGraph Neural Networks Many Graph Neural

5、 Network(GNN)models proposed recently5Cinput layerX1X2X3X4Foutput layerZ1Z2Z3Z4hiddenlayersY1Y41Our focus:Characterizing the representation power of GNNs beyond the homophily settings.Plot:Kipf+ICLR17However,most existing GNN models only look intographs with strong homophily(i.e.,where linked nodes

6、are similar)and ignore other possibilities.Graphs:Homophily and the Beyond6“Opposites Attract”Majority of linked nodes are differentNewman Networks18,Newman 04,Lee+arXiv18,Chau+ECML/PKDD06Friend network(e.g.,talkative/silent friends)Protein structures(wrt.amino acid types)E-commerce(wrt.fraudsters/a

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(1-3 图形神经网络中的超越同伦:当前限制、有效设计和对鲁棒性的影响.pdf)为本站 (云闲) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠