6-2 基于分解的图神经网络可解释性.pdf

编号:102383 PDF 50页 2.48MB 下载积分:VIP专享
下载报告请您先登录!

6-2 基于分解的图神经网络可解释性.pdf

1、Data Analytics at Texas A&M LabDecomposition Based Explainability forDeep Neural NetworksMengnan Du Department of Computer Science&EngineeringTexas A&M UniversityEmail:dumengnantamu.eduhttps:/Data Analytics at Texas A&M Lab1Playing GoMedical DiagnosisScene UnderstandingVoice RecognitionData Analytic

2、s at Texas A&M Lab2What have been learned inside the models?Data Analytics at Texas A&M Lab3Explainability of DNNs enable us to explain the behaviorexplain the behavior of ablack-box DNN model in understandable termsunderstandable terms to humansMultilayer Perceptron(MLP)Multilayer Perceptron(MLP)Co

3、nvolutional Neural Networks(CNN)Convolutional Neural Networks(CNN)11Recurrent Neural Networks(RNN)Recurrent Neural Networks(RNN)catData Analytics at Texas A&M Lab4TraditionalTraditionalDeep LearningDeep LearningExplainableExplainableDeep LearningDeep Learning1 Fan Yang,Mengnan Du,Xia Hu.Evaluating e

4、xplanation without ground truth in interpretable machine learning.arXiv,2019.1Data Analytics at Texas A&M LabResearcher/developerEnd-users5DNNExplanationResearchersRefine ExplanationEnd-usersTrust Explanations are beneficial both to end-users and researchers For end-users:increase trust and transpar

5、ency For researchers/developers:diagnose why the model might fail and help them improve the modelData Analytics at Texas A&M Lab6Gradient based method Calculate gradient or variants of gradient using backpropogation Computational efficient“Eagle”Gradient base methods One backpropagation pass Data An

6、alytics at Texas A&M Lab7Perturbation based method Perturb the input,and feed perturbed input to model Observe the models prediction difference“Eagle”Perturbation base methods Perturb input,multiple backpropagation pass Data Analytics at Texas A&M Lab8“Understandable terms to humans”?(a)Prediction C

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(6-2 基于分解的图神经网络可解释性.pdf)为本站 (云闲) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠