4-4 基于环境虚拟化的强化学习应用实践.pdf

编号:102357 PDF 31页 20.23MB 下载积分:VIP专享
下载报告请您先登录!

4-4 基于环境虚拟化的强化学习应用实践.pdf

1、基于环境虚拟化的强化学习应用实践基于环境虚拟化的强化学习应用实践俞扬南京大学/南栖仙策奖励行动观测强化学习通过与环境反复交互试错,找到最优策略强化学习是机器学习中关于如何学习决策的分支人工智能机器学习监督学习人脸识别,图像识别,统计预测强化学习AI围棋,AI游戏无监督学习数据降维,数据压缩,数据可视化Reinforcement Learning:About the intelligence of actionsAbout Reinforcement LearningJ()=Zxp(x)loss(x)dxSupervised learning objectiveJ()=ZTrap()R()dp(

2、)=p(s0)TYi=1p(si|ai,si?1)(ai|si?1)Reinforcement learning objectiveAgentEnvironmentaction/decisionrewardstateWhy SL has wide applicationsSL is much more data-drivenLess artificial,more applications“the actual contents of minds are tremendously,irredeemably complex;we should stop trying to find simple

3、 ways to think about the contents of minds We want AI agents that can discover like we can,not which contain what we have discovered.Building in our discoveries only makes it harder to see how the discovering process can be done.”Human-level Records of RL1992TD-Gammon2016AlphaGoDeep Q-Network2014Alp

4、haZero20182019AlphaStarMuZero20202020Agent57Industrial problem exampleHybrid Mode ControlData from a bad policyGlobal constraintDemands in industrial applications1.Trial-and-success3.Fully offline evaluation No errors Adaptive Performance expectation Confidence for going online4.Other challenges Cha

5、nging reward functions Mostly have no knowledge about RL for their decision-making tasks2.Very few data Decision data is always smallJ Degrave,et al.Magnetic control of tokamak plasmas through deep reinforcement learning,Nature 602:414419,2022.Recent application by DeepMindRecent application by Deep

6、Mind“We use a simulator that has enough physical fidelity to describe the evolution of plasma shape and current,while remaining sufficiently computationally cheap for learning”“This achievement required overcoming gaps in capability and infrastructure through scientific and engineering advances:1.an

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(4-4 基于环境虚拟化的强化学习应用实践.pdf)为本站 (云闲) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠